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Abstract 

 
The integration of sensor data in official statistics is in particular valuable if it can be linked with survey and administrative data. Such 

datasets of the Netherlands are linked in this application one-to-one using a unique identifier to quantify and adjust underreporting in survey 

point estimates. The survey sample consists of registered truck owners who report trips and shipment weight. The sensors measure continuously 

every passing truck on certain highway stations. Capture-recapture techniques are used to estimate underreporting in the survey. Heterogeneity 

in capture and recapture probabilities is modeled through logistic regression and log-linear models. Results show the approach being promising 

in terms of validating and adjusting survey point estimates using external sensor data. 
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1. Introduction 

 
Producing unbiased estimates in official statistics based on survey data becomes more difficult and expensive. Accord- 

ingly, research on methods using big data for the production of official statistics is currently increasing (Daas et al. 

2015). Up to now, big data is rarely used in statistical production due to its unknown data generating process (Buelens 

et al. 2014). However, in the long-term, using big data in official statistics is necessary (Lohr and Raghunathan 2017). 

Therefore, instead of using single big data sources, research on combining different probability and non-probability 

based datasets is a promising approach to use big data in official statistics (Shlomo and Goldstein 2015). More 

specifically, the different problems of surveys and big data might be minimized if a survey and a sensor (collecting big 

data) measure an identical target variable and the resulting micro-data can be linked with a unique identifier. Using this 

principle, we link survey, sensor, and administrative data for transport statistics. Using the linked dataset, we apply 

capture-recapture techniques (CRC) to validate, estimate and adjust a bias in survey point estimates due to 

underreporting in the target variables of the survey. 
 
 

2. Research background 

 
The number of surveys conducted has increased over the last decades (Singer 2016), but at the same time the 

nonresponse rates have increased, too (Meyer et al. 2015). In particular, diary surveys impose a heavy response burden 

and yield very low response rates (Krishnamurty 2008). In the past, mobility and transport diary surveys have been 

validated and adjusted using GPS data. It has been shown that these surveys are often downward biased due to 

underreporting, varying between 2.6% (Hassounah et al. 1993) and 81% (Bricka and Bhat 2006). Those studies used 

mobile GPS devices attached to vehicles or respondents. In practice, GPS devices cause problems due to intended or 

unintended switch-off, delays due to standby mode, battery issues, or the device not being carried (Bricka, Sen, et al. 

2012; Shen and Stopher 2014). Instead of using mobile GPS devices we use permanently installed road sensors to 

validate and adjust survey estimates. 
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3. Data 
 

The target population of the Road Freight Transport Survey of the Netherlands (2015) is the Dutch commercial vehicle 

fleet, excluding military, agricultural and commercial vehicles older than 25 years (≥ 3.5t weight, ≥ 2t loading capacity). 
The sample consists of 33,817 trucks sampled from the national vehicle register. A central objective of the mandatory 

diary survey is to collect data on the shipment’s weights transported by the trucks. Therefore, truck owners must report 

the days on which the truck was used and the corresponding shipment weight. 3,597 cases are classified as nonresponse. 

The answer categories regarding truck-related activities are: truck used (22,454), truck not used (5,304), and truck not 

owned (2,462). The latter case is defined as technical-nonresponse and is excluded from the analysis because the 

validity of the response cannot be verified. Underreporting is expected due to nonresponse and misreporting by falsely 

responding that the truck was not used. The sensor data is collected by the weigh-in-motion road sensor network (WIM) 

operated by the national road administration of the Netherlands consisting of 18 measurement stations. While passing, 

the vehicle’s weight is measured. The sensors do not cover all highways in the Netherlands, though are installed at 

locations with a high traffic volume and at logistical hubs. In 2015 there were 35,669,347 trucks recorded of which, 

using the unique combination of license plate and day as identifier, 44,011 could be linked one-to-one to reported trips 

in the survey. Data quality checks and cleaning were applied following the guidelines developed by Enright and OBrien 

(2011). Corrections of measurement errors on the axle weights were applied using a conditional mean imputation. 

Using a deterministic error correction rule, the weight of an axle is imputed by the average weight of the remaining 

axles if the measured weight is greater than 20t. If the weight of more than one axle exceeds 20t, the average value of 

the remaining axles with a weight of less than 20t is used here, too. Predictive modeling using a linear regression (r2 = 

ad j.r2 = 0.54) was applied to correct the weights for trucks driving outside the recommended speed interval [60;120] 

km/h. In 17,321 of the 44,011 matched trucks, no trailer could be linked to the truck. For 11,341 cases the OCR 

detection failed and in 5,980 the trailer was not listed in the register. The missing weights were imputed with the mean 

of the empty trailer weight, conditional on the automated classification of the truck and its loading capacity. The Dutch 

vehicle and enterprise register are linked to the data on a micro-level using the combination of license plate and annual 

quarter as match variable. Since the sensors measure the weight of the entire unit (truck, trailer, and shipment) the truck 

and trailer weights were subtracted using information from the vehicle register. The resulting value is the transported 

shipment weight, which corresponds to the definition of reported weight in the survey. In 3,945 cases negative shipment 

weights resulted, which were set to 0. Finally, an overall proportional bias correction was applied, calibrating the sensor 

measured shipment weights to those reported in the survey. The correction factor was obtained from the subset of 

vehicles that were observed both in the survey and by the sensors. This resulted in a downscaling of the sensor shipment 

weights by approximately 14%. Observations with missing register data was excluded from analysis (which explains 

the difference between the 44,011 matches and the 43,775 matches in Table 4.2-1). 
 
 

4. Methods 
 
Let the indicator 𝛿𝑖,𝑗

𝑠𝑣𝑦
  be 1 if  vehicle 𝑖 has been on the road on day 𝑗 of its survey period according to the survey 

response, and 0 otherwise. Let 𝛿𝑖,𝑗
𝑤𝑖𝑚  be an indicator equal to 1 if vehicle 𝑖 is recorded by a sensor station on day 𝑗 and 

equal to 0 otherwise. 𝛩𝑖,𝑗 is defined as the shipment weight carried by truck i on day j. If 𝛿𝑖,𝑗
𝑠𝑣𝑦

= 1  the sum of reported 

shipment weights in the survey is used, otherwise if 𝛿𝑖,𝑗
𝑤𝑖𝑚 = 1  the sensor shipment measurements are used. If a vehicle 

was recorded by the sensors multiple times a day, the maximum of the weights measured at these occasions is taken. 

Two target variables are considered: the total number of truck days (𝐷) and the total transported shipment weight (𝑊). 

One truck day is defined as a day that a truck has been on the road in the Netherlands. The regular survey statistics are 

post-stratification estimates, with the weights computed to take the survey design into account and to correct for 

selective nonresponse. The total of 𝐷 and 𝑊 are estimated by 𝐷̂𝑆𝑈𝑅𝑉 = ∑ (𝑤𝑖 ∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦7

𝑗=1 )𝑁
𝑖=1  and 𝑊̂𝑆𝑈𝑅𝑉 =

∑ (𝑤𝑖 ∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦

𝛩𝑖,𝑗
7
𝑗=1 )𝑁

𝑖=1 . The sensor observations are simply added to the survey observations resulting and estimated 

by 𝐷̂𝑆𝑈𝑅𝑉𝑋 = ∑ (𝑤𝑖 ∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦

∨ 𝛿𝑖,𝑗
𝑤𝑖𝑚7

𝑗=1 )𝑁
𝑖=1  and 𝑊̂𝑆𝑈𝑅𝑉𝑋 = ∑ (𝑤𝑖 ∑ (𝛿𝑖,𝑗

𝑠𝑣𝑦
∨ 𝛿𝑖,𝑗

𝑤𝑖𝑚)7
𝑗=1 𝛩𝑖,𝑗)

𝑁
𝑖=1 . This is a basic way to 

include the sensor data and to provide a lower bound on the CRC estimators. Linking survey and sensor data results in 

three subsets of units: Elements in the survey only, in the sensor data only or in both datasets (Table 4.2-1). The empty 

cell represents the trucks and trips respectively, which were not reported in the survey and not recorded by a sensor. In 

the present study, the first capture occasion is the survey where trucks are considered as being captured and marked on 

specific days in the survey period (∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦

𝑖,𝑗 ). The second capture occasion is the sensor where (∑ 𝛿𝑖,𝑗
𝑤𝑖𝑚

𝑖,𝑗 ) are captured 

in total, of which (∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦

∧ 𝛿𝑖,𝑗
𝑤𝑖𝑚

𝑖,𝑗 ) are recaptured.The Lincoln-Petersen estimator (Lincoln 1935; Petersen 1893) uses 



the quantities of those subsets to estimate the population sizes (𝐷) and (𝑊) by 𝐷̂𝐿𝑃 =
𝑛1𝑛2

𝑚2
 and 𝑊̂𝐿𝑃 =

(∑ 𝛿𝑖,𝑗
𝑠𝑣𝑦

𝛩𝑖,𝑗𝑖,𝑗 )(∑ 𝛿𝑖,𝑗
𝑤𝑖𝑚𝛩𝑖,𝑗𝑖,𝑗 )

∑ (𝛿
𝑖,𝑗
𝑠𝑣𝑦

∧𝛿𝑖,𝑗
𝑤𝑖𝑚)𝛩𝑖,𝑗𝑖,𝑗

. 

The likelihood approach proposed by Huggins (1989) and Alho (1990) models heterogeneity in capture probabilities 

using covariates conditioned on the captured elements. A logistic model is used to model capture probabilities for each 

element on each occasion. Hence, covariates are used to model the capture probabilities 𝑃̂𝑖𝑗
𝑠  and 𝑃̂𝑖𝑗

𝑤, which are the 

capture probabilities for the survey and sensor, respectively. The Horvitz-Thompson estimator (Horvitz and Thompson 

1952) is used to estimate D and W by 𝐷̂𝐻𝑈𝐺 = ∑
1

𝜓̂𝑖𝑗
𝑖,𝑗  and 𝑊̂𝐻𝑈𝐺 = ∑

𝛩𝑖,𝑗

𝜓̂𝑖𝑗
𝑖,𝑗 , with 𝜓̂𝑖𝑗 = 1 − (1 − 𝑃̂𝑖𝑗

𝑠 )(1 − 𝑃̂𝑖𝑗
𝑤). The 

estimator 𝐻𝑈𝐺𝑖𝑛𝑡 is the intercept only model. Fienberg (1972) introduced log-linear models for population size 

estimation in closed populations. To model heterogeneity in the capture probabilities in the survey (A) and sensor (B), 

any number of available covariates can be included in the model. Given the covariate 𝑋, the two-way contingency table 

is expanded to a four-way contingency table log𝑚𝑎𝑏 = 𝜆 + 𝜆𝑎
𝐴 + 𝜆𝑏

𝐵 + 𝜆𝑥
𝑋 + 𝜆𝑎𝑥

𝐴𝑋 + 𝜆𝑏𝑥
𝐵𝑋. For every level of the included 

covariates, a sub-population size is estimated which in sum gives the total population size. This method is used to 

estimate 𝐷̂𝐿𝐿 and 𝑊̂𝐿𝐿 . Using CRC techniques, the number in the empty cell is estimated. Two target variables of the 

survey are estimated: the number of truck days (𝐷) and the corresponding transported shipment weights (𝑊). 

In addition, all estimators are applied in a stratified manner. Since suspected underreporting by nonresponse and 

misreporting in the RFTS is the subject of this study, the RFTS (non)-respondents constitute the study population. The 

number of vehicles under study is 𝑁. Therefore, the indicators 𝛿𝑖,𝑗
𝑠𝑣𝑦

 and 𝛿𝑖,𝑗
𝑤𝑖𝑚 estimate 𝐷 and 𝑊 are divided into 𝑆 

strata, with 𝑁𝑠 sampling units in stratum 𝑠. Within each stratum 𝐷̂𝑠 and 𝑊̂𝑠 are estimated. Strata are based on covariates 

in the models (see section 4.1). Within each stratum the most likely amount of underreporting will be estimated. 

 
4.1 Model selection and variance estimation 
 
Covariates to fit the logit and log-linear models are selected by a stepwise selection procedure (based on BIC). Since 

the log-linear model only allows for categorical variables and to retain the full information of the covariates, the model 

selection is based on the logit model. In the log-linear model, the five variables with the most predictive power in the 

two logit models were combined. For that purpose, the continuous covariates were categorized based on their quantiles.  

Using 𝛿𝑖,𝑗
𝑠𝑣𝑦

 as the dependent variable in the logit model, the selected covariates were: classification of economic 

activity (NACE), classification of company size, total fleet loading capacity, number of wheels, horsepower, maximum 

mass of truck, mass of empty truck, maximum mass of trailer, status of owner (person or company), and province in 

which the owner is located.  Using 𝛿𝑖,𝑗
𝑤𝑖𝑚 as the dependent variable, the following covariates were selected: 

classification of economic activity (NACE), commercial or own transport, classification of company size, size of the 

vehicle fleet, total fleet loading capacity, truck equipment class, type of fuel, horsepower, mass of empty truck, 

maximum mass of trailer, number of axles, width of truck, length of truck, status of owner (person or company), 

province in which the owner is located, year of manufacture, and vehicle classification. The variables selected for the 

log-linear model were classification of economic activity (NACE), commercial or own transport, classification of 

company size, size of the vehicle fleet, total fleet loading capacity, number of wheels and horsepower. 

Since the trucks being the sampling units and not the truck days, bootstrapping was used to account for this cluster 

effect in the data (there are more truck days then sampling units). Furthermore, the shipment weight is clustered in 

trucks and not i.i.d. Simple random sampling with replacement was used to draw bootstrap samples. One bootstrap 

sample for estimation purposes consists of all elements, both survey and sensor, that are available for the vehicles in the 

bootstrap sample. The mean of the bootstrap distribution is computed to ascertain that the bootstrap procedure is 

unbiased. The 0.025% and 0.975% quantiles of the bootstrap distribution are used to estimate the boundaries of the 

95% confidence intervals. 

 
4.2 Linkage of survey and sensor data 
 
In table 4.2-1 the results of linking the survey and sensor data are shown. The left panel of the table shows 94,338 truck 

days being reported in the survey. The sensors recorded 43,775 truck days of which 34,131 were reported in the survey. 

9,644 truck days were recorded by the sensors which were not reported in the survey. The sensors did not record 60,207 

truck days which were reported in the survey. The right panel shows the transported shipment weight in kilotons (kt) on 

the reported truck days. 



 

 
Table 4.2-1 

Captures of truck days (𝑫) and transported shipment weight (𝑾) in the survey and sensors. 

 

𝐷 Survey  𝑊 Survey  

Sensor reported not reported ∑ Sensor reported not reported ∑ 

recorded 34,131 9,644 43,775 recorded 376,83 99,13 475,96 

not recorded 60,207 – 60,207 not recorded 576,88 – 576,88 

∑ 94,338 9,644 103,982 ∑ 953,71 99,13 1052,84 

 
953,71 kt were reported in the survey. 475,96 kt were recorded by the sensors, of which 376,83 kt were reported in the 

survey. Additional 99,13 kt were recorded by the sensors which were not reported in the survey. The sensors did not 

record 576,88 kt which were reported in the survey. 
 
 

5. Results 

 
Table 5-1 shows the survey and CRC estimates for 𝐷 and 𝑊. According to 𝑆𝑈𝑅𝑉𝑋 the amount of underestimation for 

𝐷 and 𝑊 is about 6%. The estimators 𝐻𝑈𝐺 and 𝐻𝑈𝐺𝑖𝑛𝑡 yield about 7% underestimation for 𝐷 and about 13% for 𝑊. 

The estimator 𝐿𝑃 yields about 16% underestimation for 𝐷 and 19% for 𝑊. In both target variables 𝐷 and 𝑊 the most 

likely amount of underestimation according to 𝐿𝐿 is about 19% for 𝐷 and 20% for 𝑊. 
 
Table 5-1 

Survey and CRC estimates for D and W, bootstrapped variance, standard error and confidence interval. 
 

Estimator Point 

estimate 

Bootstrap mean Bootstrap 

standard error 

Bootstrap 

confidence interval 

Estimated 

underestimation (in %) 

D̂ SU RV 101,390 101,399 395,96 [100,643; 102,197] – 

D̂ SU RV X
 107,666 107,672 380,66 [106,923; 108,441] 5.83 

D̂ HU G
 109,439 109,440 244,73 [108,975; 109,926] 7.35 

D̂ HU Gint 109,882 109,885 246,86 [109,412; 110,376] 7.73 

D̂ LP
 120,994 120,996 363,75 [120,304; 121,723] 16.2 

D̂ LL
 125,954 126,034 737,46 [124,673; 127,577] 19.5 

Ŵ SU RV 965,3 965,23 8,20 [ 949,33; 981,40] – 

Ŵ SU RV X
 1026,83 1026,69 8,37 [1009,94; 1043,53] 5.99 

Ŵ HU G
 1108,58 1108,36 8,32 [1091,65; 1124,37] 12.92 

Ŵ HU Gint 1112,59 1112,40 8,34 [1095,52; 1128,38] 13.24 

Ŵ LP
 1204,60 1204,38 9,14 [1185,83; 1221,89] 19,87 

Ŵ LL
 1216,85 1217,40 9,74 [1197,73; 1236,08] 20.67 

 

 
Figure 5-1 shows the six different estimators and the bootstrapped sampling variance (based on 3,000 bootstrap 

samples). The six different point estimates nearly match the median and are therefore not shown. In contrast to the 

conditional likelihood estimators, the larger difference between the unconditional likelihood estimators shows a 

stronger effect of modeling heterogeneity using covariates. It is recommended to rely on the estimates of 𝐿𝐿 since they 

are based on the full likelihood and take heterogeneity in the capture probabilities into account. 

  



 

 
Figure 5-1 

Effect of estimator on bootstrap estimates of truck days and transported shipment weights. 

 
 

Therefore, for the stratified analysis of 𝐷 and 𝑊 the relative difference between 𝑆𝑈𝑅𝑉 and 𝐿𝐿 is shown in Figure 

5-2. Again, point estimates nearly match the median and are therefore not shown. For smaller vehicle fleets (1–29 

vehicles) the amount of underestimation for 𝐷 is 20% and for 𝑊 19%. Larger vehicle fleets (30 + vehicles) show 13% 

underestimation for 𝐷 and 18% for 𝑊. Commercial transport shows 15% underestimation for 𝐷 and 17% for 𝑊. The 

most likely amount of underestimation for own transport is 22% both for 𝐷 and 𝑊. 

 
Figure 5-2 

Stratification by size of vehicle fleet and type of transport, showing the effect of 𝑳𝑳 on bootstrap estimates and 

the relative difference between 𝑺𝑼𝑹𝑽 and 𝑳𝑳. 

 
6. Conclusion 

 
We demonstrated a specific use of big data in official statistics for the estimation and adjustment of underreporting bias. 

Using CRC techniques, survey, sensor, and administrative micro-data were linked. The proposed combination of data 

sources and methods seem to produce reasonable estimates given the literature. The method presented here is applicable 

to any validation study where survey, administrative, and sensor data (or any other external big data source) can be 

linked at a micro-level using a unique identifier. However, since the sensors are not randomly distributed, the sensor 

data might be biased. Moreover, the OCR software does not recognize every front and/or back license plate and the 

resulting mismatches may influence the results. Finally, imputations methods were used to estimate missing sensor 

measurements. A systematic study of the effects of these problems on results is object of ongoing research. 
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