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Abstract 
 

Due to declining telephone survey response rates, it has become challenging for election pollsters to capture voting intentions 
in a timely way.  This has lead to the expanded use of samples obtained from non-probability web surveys. Because non-

probability samples can suffer from selection bias, we develop a model-assisted calibration method using adaptive LASSO 

regression – estimated-controlled LASSO (ECLASSO).  This method yields consistent estimates of population totals as long 
as a subset of the true predictors is included in the prediction model, thus allowing large numbers of possible covariates to 

be included without risk of overfitting. We apply ECLASSO to predict the voting results for the U.S. 2014 midterm election. 
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1.  Introduction 
 
Non-probability samples are an increasing part of life for the survey analyst.  This is due to several reasons.  Declining 

land-line and improved telephone screening technology has lead to major problems with the use of telephone survey 

to capture voting intentions in a timely manner (Kohut et al. (2012), Sturgis et al. (2016)). Increasing levels of non-

response (Dutwin and Lavrakas 2016) and increasing costs pose challenges as well.  On the positive side, non-

probability samples can provide detailed measures of interest not present in probability samples, as well as larger 

sample sizes for less cost, especially in small domains. This offers the possibility of improved inference if increases 

in precision are not overwhelmed by selection bias from the non-probability sample. 

 

 

2.  A Framework for Nonprobability Sample Inference 
 
The resurgence of non-probability sampling has prompted survey researchers to explore different adjustment methods 

for non-probability samples using probability samples. Elliott and Valliant (2017) review work in this area, dividing 

methods into “quasi-likelihood” approaches (Schonlau et al., 2004) versus “superpopulation” modeling approaches 

(Valliant et al., 2000). Consider the joint density of a population vector of analysis variables Y = (Y1, Y2, . . . , YN ) and of 0-

1 indicator variables for a sample s. In the most general setting this density can be factored as 

 

f (Y, δs|X; Θ, Φ) = f (Y|X; Θ)f (δs|Y, X; Φ)  

 

where X is an N × p matrix of covariates that govern Y through an unknown parameter Θ, and an unknown parameter 

Φ governs f (δs) through both Y and X (Smith 1983; Rubin 1976; Little 1982).  

 

In probability sampling, the sampling indicator depends only on X though known parameters: f (δs|Y, X; Φ) = f (δs|X); the 

resulting known probabilities can be used to produce sampling weights.  In non-probability sampling, δs  can depend on 

Y and/or Φ in addition to X; assuming that sufficient X are available so that |s δ Y X , f (δs|X; Φ) can be modeled and 
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the resulting estimated probabilities inverted to obtain ‘pseudo-weights’; this is sometimes termed propensity 

score weighting or quasi-randomization.  An alternative approach, superpopulation modeling, focuses on the 

underlying relationship between Y and X by modeling f (Y|X; Θ). By partitioning Y into sampled and non-sampled 

units, ( | ) ( | , ) ( |; ; ; )s ssf f fY X Θ YX Θ XYY Θ ,we can use model estimates from the sample to predict non-sampled 

elements under the assumption that ( | , ) ( |; ; )ss sf fY X Θ Y X ΘY . 

 

 

3. Calibration 

 

3.1 Generalized Regression Estimation 

 
Starting from the assumptions that a probability sample is used and that the (model) expectation of Y is linear in X 

 

 ( ) T
M i iE Y  X β   (1) 

 

for an unknown parameter β of length p, we can solve an estimating equation for β using sample data to obtain the 

least squares estimator  
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where ( )idiag dD  for design weights 
id . We can then predict the non-sampled elements ˆ

sY  using ˆˆ
s sY X β  where 

sX  is the  N n p   matrix of auxiliaries for the nonsample units.  A predictor of the population total is then given 

by  
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estimator or GREG of Deville and Särndal (1992).  (If X is an H-level categorical variable, then T̂  corresponds to 

the stratified estimator: 
1

ˆ Hps

h shh
T N y


 , where 

hN corresponds to the sample size in the hth stratum and 
shy to the 

sample mean in the hth stratum.) This estimator is model-unbiased under (1) and approximately design-unbiased if a 

probability sample is selected with probabilities given by 1
id  . 

 

The development above assumes that design weights are available as they would be in a probability sample. If the 

sample is non-probability, then D is omitted, and the population total can be estimated by the prediction estimator 
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with  
1

ˆ T T
s s s s



β X X X Y  and xs ii s
T x .  This estimator is model-unbiased under (1).  An alternative would be 

to set  diag N nD  and use (2), as is done here in section 4. 

 

In many cases, the availability of known control totals for the entire population 
UxT may be limited, making the 

assumption that ( | , ) ( |; ; )ss sf fY X Θ Y X ΘY rather strong.  In this case, there may be a “benchmark” probability 

survey available with a richer set of X covariates available.  We replace 
UxT in (2) with 

BxT , the population total 



estimated from the probability survey (Dever and Valliant 2010); we refer to the resulting estimators as estimated 

control generalized regression estimators, or ECGREG estimators. 

 

3.2 Model-Assisted Calibration 

 

The weights 
iw  in GREG can be viewed (Deville and Särndal 1992) as the weights that minimize  

2
/i i ii s

w d d


  

subject to the constraint that i ii s Ux
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 x T (for standard calibration to known control totals) or i ii s Bx

w


 x T (for 

calibration to estimated benchmark control totals). Model-assisted calibration (Wu and Sitter 2001) minimize 
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calibration weights are given by 
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, and 
sn1 is a vector of 1s of length equal to the sample size. It can be shown that the model-assisted estimator of the 

total given by the weighted sum of the model-assisted weights is given by 
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where the B̂ that satisfies the calibration constraints is given by the design-weighed correlation between the observed 

and predicted values: 
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  are the design-weighted means of the predicted and observed 

values, respectively. As long as the original design weights produce unbiased estimates, ˆMCT is approximately design 

unbiased when the sample size is large; the “assisting model” given by (1) improves efficiency to the extent that it is 

accurate.  Just as with ECGREG estimators, we can replace covariates obtained from a population with covariates 

estimated from a benchmark sample 
Bs  (we now denote our primary analytic sample by 

As ).  This replaces population 

totals Twith  ˆ ˆ,
B B

B B

i i ii s i s
d d Y

 
  T , and our estimator of the population total (3) is updated as  
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which we refer to as estimated control model-assisted calibrated, or ECEM, estimators. 

 

3.3 ECLASSO 

 
Here we develop estimated control lasso calibration, or ECLASSO.  In many cases we may want to use a large vector 

of potential control totals for model (1), particularly if we are obtaining them from a benchmark probability survey. 

However, use of a large number of covariates might yield unstable prediction; hence, instead of obtaining β
 ̂    
  by least 

squares as in ECEM, we use adaptive LASSO (Zhou 2006), a more robust estimation procedure.  McConville et al 

(2017) and Chen et al. (2018) considered the use of adaptive LASSO for model-assisted calibration in setting with 

probability sampling or known population values; here we consider its use when the analytic sample is a non-probability 

sample and the benchmark sample is a probability sample. 

 



The adaptive LASSO regression coefficients are obtained by solving a penalized regression equation.  For linear 

adaptive LASSO regression, this is 
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For logistic adaptive LASSO, this is  
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The factor ˆ1 / MLE

j



 balances the selection of covariates with large effect sizes in favor of lowering prediction error 

when the sample size is small.  Once values of   and   are fixed, β̂  can be calculated through iterative procedures 

(Friedman et al. 2010); these algorithms are implemented in the R package glmnet. Values of   and   

can be explored over a grid of values and selected via cross-validation. Adaptive LASSO has a model-consistency 

property known as the oracle property, which states that, under the condition that there is a regression model in which 

the parameters have both non-zero β(1) and zero components β(2) and   grows at least at the rate of  /n n


 but 

not faster than n , (2)ˆ( 0) 1P  β  and  (1) (1)ˆn β β  → N (0,C) where 
1 (1)( )I C β is the inverse of the Fisher 

information matrix of β.  Said less technically, subject to regularity conditions, adaptive LASSO will converge to the 

true model as long as all true linear predictors are in the model. 

 

Having obtained β̂  via adaptive LASSO, we obtain ˆ T

i iY  x β  and compute ˆECLASSOT as in (4). It can be shown that, as 

long as the benchmark sample has the correct design weights ˆECLASSOT  will be asymptotically design and model 

unbiased, with an asymptotic design variance given by 
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When the analytic sample A is a non-probability sample, we set 
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 . An alternative 

approach is to use a bootstrap estimator, which can be obtained by drawing one finite-population bootstrap of the 

benchmark sample and one simple-random-sample with replacement from the analytical sample, and then compute 

ˆECLASSOT for each bootstrap sample. Simulation studies (not shown) find the analytic variance tends to underestimate 

the true variance, whereas a bootstrap estimator tends to be conservative. 

 

 

4. Predicting 2014 US Senate and Governors Races 

 
A random 10% of respondents who completed a SurveyMonkey poll in October 2014 were asked to provide voting 

preferences in Senate and governor races; approximately 2-3% did so.  Although the sample was randomly selected 

among the survey takers, the response rate was low and, more importantly, the pool of respondents who completed an 



initial SurveyMonkey survey is non-probability-based and may not be representative of the voting population. Because 

conditioning on likely voters improves election prediction (Bolstein, 1991; Gutsche et al., 2014), we restricted our 

analysis to those who indicated they: (1) already voted, (2) were absolutely certain to vote, or (3) were very likely to 

vote, and further who indicated they would vote for either a Democratic or Republican candidate, the two major US 

political parties. When further restricted to 8 states with Senate races (GA, IL, MI, MN, NJ, NC, TX, VA) and 11 

states with gubernatorial races (AZ, CA, FL, GA, IL, MI, NY, OH, PA, TX, WI) that also had sufficient sample sizes 

of benchmark survey samples, the final analytical sample sizes are 33,199 for the collection of governor races and 

28,686 for the collection of Senate races. 

 

The benchmark probability sample of potential voters was obtained via telephone and cellphone during September 

and October of 2014 by the Pew Research Center (http://www.pewresearch.org). The benchmark sample consisted of 

1,094 gubernatorial voters and 656 Senatorial voters. The surveys contained a large set of common covariates, 

including: age, gender, race, education, religion, religious attendance, approval of Obama, party preference. 

 

The target of inference is the voting spread between Republicans and Democrats in state r, defined as 
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where  A r
s  is the set of respondents in state A, iy  is an indicator for favoring the Republican candidate, and iw   

depends on the estimator considered.  In particular, we consider 4 estimators: 

 

• UNWT: Unadjusted ( 1iw  ). 

• STATEWT: Calibrated to state-level measures from probability survey ( 1ˆ ( )i i iw p  x  where 

 ˆ ˆˆ ( ) exp (1 )T T

i i i ip  x x α x α  and α̂  is estimated from a logistic regression of an indicator for being in the 

benchmark survey of covariates).   

• ECGREG: Model assisted-calibration using GREG ( iw as defined in Section 3.2). 

• ECLASSO: Model assisted-calibration using LASSO ( iw as defined in Section 3.3). 

 

All confidence intervals were computed using bootstrap. Because the true results of the election are known, we can 

compute estimates of bias, root mean square error (RMSE), and coverage. Given the limited number of replications 

(11 gubernatorial races and 8 Senate races), we considered an α-level of 0.20 rather than 0.05 for coverage. 

 

4.1 Results: gubernatorial races 

 
Figure 1 shows results for 11 governor election forecasts. UNWT, STATEWT, and ECLASSO predicted the correct 

winning political party for all states in the analysis. ECGREG predicted Arizona and Florida incorrectly.  However, 

without weighting adjustments, the sample has Republican overrepresentation, with 10 out of 11 states biasing toward 

Republican candidates. STATEWT reduced the bias for most states, while ECGREG appears to have over-adjusted 

toward Democratic direction. ECLASSO reduced unadjusted absolute sample bias to a maximum of 6% of true values 

across the 11 states, versus 10%-25% for the other estimators. On average, ECLASSO also has the smallest relative 

error across the states (0.5% D versus 1.9% R to 7.0% D for the other estimators), as well as the smallest RMSE (4.7% 

vs. 5.2% to 15.0% for the other estimators). Finally, STATEWT and ECLASSO had the best interval coverage (7 out 

of 11 or 64% of the 80% CIs). 



Figure 4.1-1 

Results for gubernatorial races: point estimates and 80% confidence intervals   

  
Note: Black line shows actual voting spread. 

 

4.2 Results: Senate races 

 
Figure 2 lists results for 8 Senate election forecasts. UNWT, STATEWT, and ECLASSO predicted the correct 

winning political party for all states in the analysis. ECGREG predicted Georgia and North Carolina incorrectly. 

Similar to the governor sample, the Senate sample has more Republican votes than the true voting spread, with 6 out 

of 8 states biasing toward Republican candidates. STATEWT reduced the bias for the majority of states, while 

ECGREG overadjusted in the Democratic direction. ECLASSO reduced unadjusted absolute sample bias to a 

maximum of 8% of true values across the 8 states, versus 9%-27% for the other estimators. On average, ECLASSO 

also has the smallest relative error across the states (1.0% R versus 2.4% R to 9.0% D for the other estimators), as 

well as the smallest RMSE (5.1% vs. 6.0% to 12.2% for the other estimators). Here ECLASSO was again tied for 

the best interval coverage (4 out of 8 or 50% of the 80% CIs), but this time with ECGREG (whose intervals were 

much wider). 

 

Figure 4.2-1 

Results for Senate races: point estimates and 80% confidence intervals 

 
Note: Black line shows actual voting spread. 

 

 

5. Discussion and Next Steps 

 



Calibration is an important method to consider to deal with selection bias in non-probability samples.  Here we 

developed estimated control lasso calibration, or ECLASSO, which uses adaptive LASSO to leverage large numbers 

of potential covariates in benchmark probability surveys to adjust estimates obtained from non-probability surveys 

using model-assisted calibration.  We show that a relatively small benchmark sample can be used to substantially 

improve estimation of 2014 US governor and Senate races that relied on a non-probability poll of SurveyMonkey 

users, both in comparison to unadjusted estimates, as well as estimates obtained using alternative methods such as 

propensity score adjustment or generalized regression estimation. 

 

Combining data from probability and non-probability samples remains an open area for research: use of propensity 

score, mean or quantile matching, mode effects, measurement error, and data harmonization and alignment are all 

important topics. We hope the application discussed here will encourage such work. 
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