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Abstract 

 
In small area applications, often unit- and area-level information is available. The joint usage of unit- and area-level data 

for small area estimation within one single model encloses a variety of methodological problems. Firstly, it implies an 

increasing number of model parameters that need to be estimated. A careful selection of variables needs to be considered 

in order to avoid destabilized model predictions in the presence of small samples. Secondly, unit- and area-level data 

may have different distributional characteristics in terms of dispersion patterns and correlation structures. Thirdly, unit- 

and area-level data are usually subject to different kinds of measurement errors. We propose a multi-level model with 

level-specific penalization to overcome these issues and use unit- and area-level data jointly for small area estimation. 

In an example, we combine health survey data on the unit-level and aggregated micro census records on the area-level 

to estimate regional hypertension prevalence in Germany. 
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1. Introduction 

 
Small area estimation is frequently applied to obtain reliable estimates of aggregate-specific quantities (area-

statistics) from small samples (Rao and Molina, 2015; Münnich et al., 2016;). A direct estimator that only uses 

data of one area at a time cannot produce area-statistic estimates with sufficient accuracy in that case. Small area 

estimation was developed to solve this problem by combining data from multiple areas in suitable regression 

models. The general idea is to improve estimation efficiency over a direct estimator by exploiting the functional 

relation between the area-statistic of interest and suitable auxiliary data. Depending on the field of application, 

either area-level models (Fay and Herriot, 1979) or unit-level models (Battese et al., 1988) are proposed. The 

efficiency gain of a small area estimator over a direct estimator is determined by the explanatory power of the 

underlying regression model. Accordingly, in a situation where auxiliary data for both unit- and area-level is 

available, both levels should be considered in order to maximize the explanatory power and thus to produce optimal 

area-statistic estimates. 
 

However, using unit- and area-level data jointly for model-based small area estimation encloses some 

methodological problems. Firstly, it requires model parameter estimation on both levels simultaneously. In the 

presence of small samples, the increased number of parameters may lead to considerably high variance in model 

parameter estimates due to the lack in degrees of freedom. Model-based area-statistic estimates then also suffer 

from high variance and are not reliable. Secondly, unit- and area-level data tend to have different distributional 

characteristics and correlation structures due to different degrees of aggregation (Clark and Avery, 1976). 

Subsequently, the levels should not be treated equally in terms variable selection and model parameter estimation. 

Thirdly, unit- and area-level data is usually subject of different kinds of measurement errors. While unit-level data 

may suffer from imprecise responses, area-level data might be uncertain because its values are estimated. As 

ignoring measurement errors leads to suboptimal area statistic estimates, the researcher should account for this 

(Lohr and Ybarra, 2008). And finally, unit- and area-level data usually differs in availability. Unit-level data is 

often not available due to confidentiality, whereas area-level data is less sensitive and easier to access, for example 

from registries. Accordingly, a combined model must be able to handle situations where there are a large number 

of variables on area-level while only few are available on unit-level. 
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We propose to combine unit- and area-level data for small area estimation in a multi-level model under level-

specific penalization. Level-specific penalization refers to penalized maximum likelihood estimation of the model 

parameters, where the fixed effect coefficients on each level are shrunk by an individual penalty. For this purpose, 

the least absolute shrinkage and selection operator (LASSO), the ridge penalty and the elastic net are considered. 

Using level-specific penalization in multi-level models solves the methodological problems mentioned before. 

Firstly, it allows for high-dimensional inference. Hence, even if the number of model parameters surpasses the 

number of observations, the underlying optimization problem for model parameter estimation is still well-posed. 

This is particularly attractive in the presence of small samples. Secondly, level-specific penalization marks a simple 

way to treat unit- and area-level data differently for model parameter estimation. The penalties can be defined 

dependent on the distributional characteristics of the corresponding auxiliary data. Further, if a sparsity-inducing 

penalty is chosen (e.g. the LASSO), an automatic level-specific variable selection is conducted. Thirdly, norm-

type regularization implies a robustification against measurement errors in the auxiliary data (Bertsimas and 

Copenhaver, 2018; Burgard et al., 2019a). Accordingly, level-specific penalization allows for robust estimation 

despite different measurement errors on each level. And finally, the degree of penalization on each level can be 

altered depending on the number of variables available for prediction. 

 

Penalized maximum likelihood estimation of the model parameters is performed with a stochastic coordinate 

gradient descent algorithm using insights from Tseng and Yun (2009) as well as Schelldorfer et al. (2011). Random 

effect prediction is done from a Bayesian approach using maximum a posteriori, as suggested by Schelldorfer et 

al. (2011). An application is provided on the example of health measurement in Germany. We combine unit level 

data from the German health survey Gesundheit in Deutschland aktuell (GEDA) with area level data from 

aggregated micro census records to estimate regional hypertension prevalence. The remainder of the paper is 

organized as follows. In Chapter 2, the multi-level model and model parameter estimation are described. In Chapter 

3, the application to health measurement is presented. Chapter 4 closes with some conclusive remarks. This 

contribution is a short version of the working paper Penalized Small Area Models for the Combination of Unit- 

and Area-Level Data by the same authors. It gives a general overview on the methodology. For deeper insights 

and computational details of our approach, we refer to Burgard et al. (2019b).  

 

 

2. Methods 

 

2.1 Multi-Level Model 

 
Let 𝑈 be a finite population of size 𝑁 consisting of 𝑚 pairwise disjoint areas of size 𝑁𝑖 with 𝑖 = 1, … , 𝑚 

and ∑ 𝑁𝑖
𝑚
𝑖=1 = 𝑁. Let a random sample 𝑆 of size 𝑛 be drawn from 𝑈 such that there are 𝑚 area sub-samples 𝑆𝑖 of 

size 𝑛𝑖 > 1 with ∑ 𝑛𝑖
𝑚
𝑖=1 = 𝑛. Let 𝒚𝑖 ∈ ℝ𝑛𝑖×1 be a vector containing observations of some response variable 𝑦 

from which the area-statistic of interest in area 𝑖 is calculated. Let 𝑿𝑖
𝑢 ∈ ℝ𝑛𝑖×𝑝𝑢

be the fixed effects design matrix 

in area 𝑖 containing unit-level covariates. Let 𝑿𝑖
𝑎 = (𝒙𝑖

𝑎 , … , 𝒙𝑖
𝑎)′ ∈ ℝ𝑛𝑖×𝑝𝑎

 be the fixed effect design matrix 

resulting from an expansion of the vector 𝒙𝑖
𝑎 ∈ ℝ1×𝑝𝑎

 containing area-level covariates. Note that (𝑝𝑢 + 𝑝𝑎) > 𝑛 

is allowed. Let 𝒁𝑖 ∈ ℝ𝑛𝑖×𝑞  be the random effect design matrix in area 𝑖 with 𝑞 ≤ (𝑝𝑢 + 𝑝𝑎). In the majority of 

small area models, the random effect structure is usually limited to an area-specific random intercept. However, 

the general formulation of the multi-level model allows for an area-specific random effect on potentially all 

covariates. The multi-level model combining unit- and area-level data is given by 

𝒚𝑖 = 𝑿𝑖
𝑢𝜷𝑢 + 𝑿𝑖

𝑎𝜷𝑎 + 𝒁𝑖𝒃𝑖 + 𝒆𝑖     ∀ 𝑖 = 1, … , 𝑚, 

where 𝜷𝑢 ∈ ℝ𝑝𝑢×1, 𝜷𝑎 ∈ ℝ𝑝𝑎×1 are the fixed effect coefficient vectors for each level and 𝒃𝑖 ∼ 𝑀𝑉𝑁(𝟎, 𝚿) 

denotes the random effect coefficient vector under multivariate normality with some general positive-definite 

covariance matrix 𝚿. 𝒆𝑖 ∼ 𝑀𝑉𝑁(𝟎, 𝜎2𝑰𝑛𝑖
) is a vector of i.i.d. random errors with model variance parameter 𝜎2. 

Note that 𝒃1, … , 𝒃𝑚 , 𝒆1, … , 𝒆𝑚 are assumed to be stochastically independent. Thus, the response vector has the 

following distribution under the model 

𝒚𝑖 ∼ 𝑀𝑉𝑁(𝑿𝑖
𝑢𝜷𝑢 + 𝑿𝑖

𝑎𝜷𝑎, 𝑽𝑖(𝜎2, 𝝍)), 

with 𝑽𝑖(𝜎2, 𝝍) = 𝜎2𝑰𝑛𝑖
+ 𝒁𝑖𝚿𝒁𝑖 ′, where the random effect covariance matrix is parametrized by a vector 𝝍 of 

dimension 𝑞∗ < 𝑛, for example as a result of a Cholesky decomposition. Restating the model over all areas obtains 

𝒚 = 𝑿𝑢𝜷𝑢 + 𝑿𝑎𝜷𝑎 + 𝒁𝒃 + 𝒆, 



with 𝑿𝑢 = (𝑿1
𝑢′

, … , 𝑿𝑚
𝑢 ′)′,  𝑿𝑎 = (𝑿1

𝑎′
, … , 𝑿𝑚

𝑎 ′)′, 𝒁 = 𝑑𝑖𝑎𝑔(𝒁1, … , 𝒁𝑚) as stacked matrices and 𝒚 =
(𝒚1

′ , … , 𝒚𝑚
′ )′, 𝒃 = (𝒃1

′ , … , 𝒃𝑚
′ )′,  𝒆 = (𝒆1

′ , … , 𝒆𝑚
′ )′ as stacked vectors. Define the full parameter vector 𝜽 ≔

(𝜷𝑢, 𝜷𝑎 , 𝜎2, 𝝍) ∈ ℝ𝑝𝑢+𝑝𝑎+1+𝑞∗
. The negative log-likelihood function is then 

−𝑙(𝜽) =  
1

2
(𝑛 ⋅ log(2𝜋) + log(|𝑽|) + (𝒚 − 𝑿𝑢𝜷𝑢 − 𝑿𝑎𝜷𝑎)′𝑽−1(𝒚 − 𝑿𝑢𝜷𝑢 − 𝑿𝑎𝜷𝑎)), 

with 𝑽 = 𝑑𝑖𝑎𝑔(𝑽1, … , 𝑽𝑚) and |𝑽| denoting the determinant of 𝑽. 

 

2.2 Penalized Model Parameter Estimation 

 
Penalized model parameter estimation in the model is characterized by the optimization problem 

 𝜽̂ =  𝑎𝑟𝑔𝑚𝑖𝑛𝜷𝑢 ,𝜷𝑎,𝜎2> 0,𝚿>0{−𝑙(𝜽) + 𝜆𝑢𝑃𝑢(𝜷𝑢) + 𝜆𝑎𝑃𝑎(𝜷𝑎)}, 

where 𝑃𝑢(𝜷𝑢): ℝ𝑝𝑢
→ ℝ, 𝑃𝑎(𝜷𝑎): ℝ𝑝𝑎

→ ℝ are level-specific penalties on the fixed effect coefficients and 

𝜆𝑢 , 𝜆𝑎 > 0 are level-specific tuning parameters that are determined from k-fold cross validation. The following 

penalties are considered (𝑙 ∈ {𝑢, 𝑎}): 

1. LASSO (Tibshirani, 1996): 𝑃𝑙(𝜷𝑙) = ‖𝜷𝑙‖1  
2. Ridge (Hoerl and Kennard, 1970): 𝑃𝑙(𝜷𝑙) = ‖𝜷𝑙‖2

2  
3. Elastic Net (Zou and Hastie, 2005): 𝑃𝑙(𝜷𝑙) = 𝛼𝑙‖𝜷𝑙‖1 + (1 − 𝛼𝑙)‖𝜷𝑙‖2

2, where 𝛼𝑙 ∈ [0,1] is a level-

specific hyper parameter. 

 

The penalties have different effects on the optimal solutions for the fixed effect coefficients. The LASSO induces 

are sparse solution for 𝜷̂𝑢 and 𝜷̂𝑎. The level-specific sparsity is controlled by  𝜆𝑢 , 𝜆𝑎. Including this penalty leads 

to an automatic variable selection in the estimation process, as coefficients that are irrelevant for the description 

of the response variable are set to zero. On the contrary, the ridge penalty induces a dense solution for 𝜷̂𝑢 and 𝜷̂𝑎. 

It smooths the individual contributions of the coefficients in the estimation process. The level-specific smoothness 

is controlled by 𝜆𝑢 , 𝜆𝑎. The ridge penalty does not perform variable selection, but is known to deliver more stable 

results in the presence of multicollinearity and grouping structures in the covariates. The elastic net is a linear 

combination of the LASSO and the ridge penalty. It induces a sparse solution while allowing for grouping 

structures in the covariates. The level-specific weight of each penalty is controlled by 𝛼𝑢, 𝛼𝑎. The idea of level-

specific penalization is to choose 𝑃𝑢(𝜷𝑢), 𝑃𝑎(𝜷𝑎), 𝜆𝑢 , 𝜆𝑎 dependent on the distributional characteristics of the 

covariates on each level to obtain optimal model predictions. 

 

In order to solve the minimization problem under a given penalization, a stochastic modification of the coordinate 

gradient descent algorithm proposed by Tseng and Yun (2009) as well as Schelldorfer et al. (2011) is used. 

Minimization via coordinate descent implies that the value of the objective function is minimized gradually by 

updating a single element 𝜃𝑟 ∈ 𝜽 at a time while keeping 𝜽−𝑟 fixed. The remaining elements 𝜽−𝑟  are updated 

accordingly in an iterative manner such that there is a cyclic movement through all coordinates of 𝜽. This cyclic 

approach is particularly useful for the proposed multi-level model, as it allows for an easy implementation of the 

level-specific penalization in the estimation process.  The order of the coordinates that correspond to fixed effect 

coefficients is changed randomly in each iteration to improve the convergence probability of the algorithm in the 

light of the nonconvex minimization problem. The general estimation order that is common in small area models 

(fixed effects conditionally on the variance parameters and vice versa) is not varied. Note that if 𝜃𝑟 ∈ (𝜷𝑢, 𝜷𝑎), 

then the required update for minimization is additionally dependent on the penalty chosen for its respective level.  

This has further implications on how to calculate the descent direction and how to determine a suitable step length 

in each iteration. However, these details are skipped here.  For more computational insights on the algorithm used 

for model parameter estimation, we refer to Burgard et al. (2019b).  

 

Beside model parameter estimation, the random effects must be predicted. For this, we use maximum a posteriori 

estimation, as suggested by Schelldorfer et al. (2011). This is a Bayesian approach where the quantity of interest 

is estimated from the mode of the posterior distribution. Let 𝑓 denote a normal probability density. We have 

 

   𝒃̃𝑖  = 𝑎𝑟𝑔𝑚𝑎𝑥𝒃𝑖
{

𝑓(𝒚𝑖|𝒃𝑖 , 𝜷𝑢 , 𝜷𝑎 , 𝜎2, 𝝍) ⋅ 𝑓(𝒃𝑖|𝝍)

𝑓(𝒚𝑖|𝜷
𝑢 , 𝜷𝑎 , 𝜎2, 𝝍)

} 

                                 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒃𝑖
{

1

𝜎2
‖𝒚𝑖 − 𝑿𝑖

𝑢𝜷𝑢 − 𝑿𝑖
𝑎𝜷𝑎 − 𝒁𝑖𝒃𝑖‖2

2 + 𝒃𝑖
′𝚿−1𝒃𝑖}. 

Under the model assumptions, it can be concluded that 



𝒃𝑖 =  (𝒁𝑖
′𝒁𝑖 + 𝜎2 𝚿−1)−1𝒁𝑖

′(𝒚𝑖 − 𝑿𝑖
𝑢𝜷𝑢 − 𝑿𝑖

𝑎𝜷𝑎), 

which is then predicted by 

𝒃̂𝑖 =  (𝒁𝑖
′𝒁𝑖 + 𝜎̂2 𝚿̂−1)

−1
𝒁𝑖

′(𝒚𝑖 − 𝑿𝑖
𝑢𝜷̂𝑢 − 𝑿𝑖

𝑎𝜷̂𝑎) 

using the model parameter estimates obtained from the coordinate descent algorithm.  

 

 

3. Regional Hypertension Prevalence Estimation 

 
The methodology is applied to health measurement in Germany. The objective is to estimate the hypertension 

prevalence for the population of age 18+ on regional levels. The definition of the disease profile is adapted from 

the Robert Koch Institute (2012). We combine two different data sources for this purpose. The first data source is 

the German health survey Gesundheit in Deutschland aktuell (GEDA) from 2010. It contains detailed medical and 

health-related information on roughly 20.000 participants of age 18+. The observations of this survey are used as 

unit-level data source. The second data source is aggregated records of the German micro census from 2010. The 

micro census is a large-scale survey that covers 1%-sample of the German population. It contains (among others) 

socio-demographic and economic information that we use in aggregated form on regional levels to maximize the 

explanatory power for hypertension prevalence estimation.  

 

The elastic net penalty with hyper parameters 𝛼𝑢 = 𝛼𝑎 = 0.5 is used for penalized maximum likelihood 

estimation of the model parameters. The tuning parameters 𝜆𝑢 , 𝜆𝑎 are determined by k-fold cross validation. As 

the elastic net is a sparsity-inducing penalty, an automatic variable selection is conducted in the estimation process. 

On the unit-level, demographic, comorbidity-related and lifestyle-related variables are selected. On the area-level, 

mainly socio-economic and labour market variables are selected. The methodology obtains the following results.  

 

  



 

Figure 3-1 

Estimated Hypertension Prevalence for 2010, Federal States 

 

 

Figure 3-1 is a heat map of Germany in which the estimated hypertension prevalence per federal state are displayed. 

The nationwide hypertension prevalence is at 26.8%. This is consistent with the results of the Robert Koch Institute 

(2012), which calculated a survey-based 95%-confidence interval of [25.9%; 27.6%]. By looking at the federal 

state estimates, one can see that the lowest prevalence is located in the south of the country, which consists of the 

federal states Baden-Württemberg and Bavaria. The highest prevalence can be found in the east of the country, 

which is the former territory of the German Democratic Republic.  The estimated regional distribution is plausible, 

as in past studies similar distributions of closely related diseases, like diabetes mellitus type 2, have been found 

(see e.g. Schipf et al., 2014).  

 

 

4. Summary and Outlook 

 
A multi-level model for the joint usage of unit- and area-level data was proposed. The model allows to combine 

multi-level data from different data sources to optimize model-based small area estimation by maximizing the 

explanatory power of the underlying regression model. The methodological problems associated with the level 

combination are solved by level-specific penalization using the LASSO, the ridge penalty, and the elastic net. 

Regularization parameter tuning is done via k-fold cross validation. Model parameter estimation is performed by 

a stochastic gradient descent algorithm. For random effect prediction, a maximum a posteriori approach is used.  



Future research may focus on estimating the mean squared error of the area-statistic estimates under level-specific 

penalization. On the one hand, the penalized model parameter estimates don’t have a closed-form solution. On the 

other hand, the penalized maximum likelihood approach introduces some bias to the model parameter estimates 

that is hard to quantify. Burgard et al. (2019a) propose a modified Jackknife approach to estimate the MSE of a 

penalized Fay-Herriot model. While the general procedure is applicable to our approach, some further 

modifications may be required in order to include the level-specific penalization in the estimation process.  
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