Legislative Influences - 2009

Changes in legislation and the resulting change in the offence classification creates discontinuity in the historical record of particular criminal offences. Legislative changes to assault, sexual assault, theft, arson, mischief, prostitution and youth crime must be considered when making comparisons over time. Some of the more significant changes are as follows:

Sexual Assault: Bill C-127 (1983):

Bill C-127 abolished the offences of rape, attempted rape and indecent assault and introduced a three-tiered structure for sexual assault offences. The Bill also eased the circumstances under which police could lay charges in incidents of sexual and non-sexual assault.

Young Offenders Act (1984):

With the proclamation of the YOA in April 1984, 12 years became the minimum age for which criminal charges could be laid. However, the maximum age continued to vary until April 1985, when the maximum age of 17 (up to the 18th birthday) was established in all provinces and territories. Youths, as defined in this publication, refer to those aged 12 to 17 (inclusive). This definition applies to the target group who fall under the delegation of the Young Offenders Act (YOA).

Traffic Offences:

Bill C-18 (1985): In December 1985, Bill C18 made major legislative changes with respect to certain traffic offences (all 700 series offences). It imposed more stringent sentences for dangerous driving and drinking and driving. It also facilitated the enforcement of impaired driving laws by authorizing police to take blood and/or breath samples under certain circumstances. As a result, data previous to 1985 for traffic offences are not comparable and have not been presented.

Property value limits:

Bill C-18 (1985) and Bill C-42 (1995): In 1985, Bill C-18 altered the property value limits from under and over $200 to under and over $1,000. This applies to offences such as theft, possession of stolen goods, mischief and fraud. As of February 1995, Bill C-42 revised the property value limits to under and over $5,000.

Alternative measures: Bill C-41 (1996):

Bill C-41 was proclaimed into law September 3, 1996. One of its highlights was the introduction of “alternative measures” for adults, which provided ways of dealing with disputes and minor offences outside the formal court proceedings.

Firearms: Bill C-68 (1997):

Bill C-68, proclaimed on January 1, 1997, requires that all firearm owners must obtain a Firearms License by January, 2001. This license replaces the Firearms Acquisition Certificate in use since 1977. Commencing October 1, 1998, each weapon must be registered within five years and a Registration Certificate will be issued. Bill C-68 also provides for tougher penalties for using a firearm while committing a crime.

Controlled Drugs and Substances Act: Bill C-8 (1997):

This new legislation came into force on May 14, 1997. The Controlled Drugs and Substances Act (CDSA) repealed and replaced the Narcotic Control Act (NCA) and parts of the Food and Drugs Act (FDA) in 1996. With this change in legislation, offences related to the possession, trafficking and importation of certain controlled or restricted drugs not identified in the earlier statutes are now (since 1997) included in other drugs category. Hence, comparisons with years prior to 1997 should be made with caution.

Dangerous Operation Evading Police:  Bill C-202 (2000):

Law C-202 came into effect March 30th, 2000.  This legislation modifies section 249 of the Criminal Code, thus creating new offences of dangerous operation of a motor vehicle when used for evading police.

Youth Criminal Justice Act: Bill C-7 (2003):

The extrajudicial measures encouraged by the Youth Criminal Justice Act, proclaimed on April 1, 2003, include taking no further action, informal police warnings, referrals to community programs, formal police cautions, Crown cautions, and extrajudicial sanctions programs. It is presumed that extrajudicial measures are adequate to hold accountable non-violent offenders who have not previously been found guilty in court.

Street Racing: Bill C-19 (2006):

Bill C-19, proclaimed on December 14, 2006, addresses the street-racing problem by making four amendments to the Criminal Code: “Street-racing” has been defined, five new street-racing offences have been added, for three of the new offences, it provides maximum prison terms longer than those currently provided for dangerous operation or criminal negligence in the operation of a motor vehicle, and it introduces mandatory driving prohibition orders for a minimum period of time, with the length of the prohibition increasing gradually for repeat offences.

Unauthorized Recording of a Movie: Bill C-59 (2007):

Bill C-59, proclaimed on June 22, 2007, addresses the illegal recording of movies in theatres by creating two offences in the criminal code: recording for personal use of a movie shown in a theatre – liable to imprisonment for not more than two years, and recording for commercial purposes of a movie shown in a theatre – liable to imprisonment for not more than five years.

Tackling Violent Crime: Bill C-2 (2008)

As a result of Bill C-2, which was proclaimed on February 28, 2008, the age of consent was raised from 14 to 16 for the following Criminal Code offences: sexual interference, invitation to sexual touching, sexual exploitation, bestiality and exposure to person under 14. For sexual assault levels 1 to 3, the age changes for complainant (formerly 14) to under the age of 16.

Impaired operation and failure to provide blood sample now includes the separation between alcohol and drugs (or combination of drugs). Fail/refuse to provide breath sample and failure to comply or refusal (drugs) will now have a maximum penalty of 25 years. 

New firearm offences will separate offences of breaking and entering by robbery to steal a firearm and to steal a firearm, which carry a maximum penalty of 25 years.

Tackling Violent Crime: Bill C-2 (2009)

As a result of Bill C-2, which was proclaimed on February 28, 2008, the UCR has also created a new code for sexual exploitation of a person with a disability.  As well, two new Firearm violations have been added: Robbery to steal a firearm, and Break and Enter to steal a firearm.

Act to amend the Criminal Code (organized crime and protection of justice system participants) Bill C-14 (2009)

Bill C-14 officially came into effect on October 2, 2009.  As a result, two new violation codes have been created:  Assaulting with a weapon or causing bodily harm to a peace officer, and aggravated assault to a peace officer.

In 2002, legislative changes were made to include the use of the Internet for the purpose of committing child pornography offences. As such, the percent change in this offence is calculated from 2003 to 2009.

Comparing UCR Data with Courts and Corrections Data

It is difficult to make comparisons between data reported by police and data from other sectors of the criminal justice system (i.e., courts and corrections). There is no single unit of count (i.e., incidents, offences, charges, cases or persons) which is defined consistently across the major sectors of the justice system. As well, charges actually laid can be different from the most serious offence by which incidents are categorized. In addition, the number and type of charges laid by police may change at the pre-court stage or during the court process. Time lags between the various stages of the justice process also make comparisons difficult.

Census Metropolitan Area Methodology1

For the reporting of crime statistics and police personnel, official Statistics Canada census metropolitan area (CMA) populations have been adjusted to follow policing boundaries. Police service boundaries often do not correspond directly with CMA boundaries, particularly in the case of rural detachments. In an effort to match as closely as possible, the following guidelines are used:

  • If more than half of a detachment's population falls within CMA boundaries, then all of that detachment's crime is included and the portion of its population falling outside the CMA is added to the official CMA population.

  • Conversely, if less than half of a detachment's population falls within CMA boundaries, then all of that detachment's crime is excluded and the portion of its population falling within the CMA is subtracted from the official CMA population.

CMA Abbotsford-Mission

  • The following areas within the CMA have been excluded: Fraser Valley H (5909064), Upper Sumas 6 (5909877).

CMA Barrie

  • The following areas outside the CMA have been included: Bradford West Gwillimbury (3543014).

  • The following areas within the CMA have been excluded: Springwater (3543009).

CMA Brantford

  • The following areas outside the CMA have been included: Six Nations (Part) 40 (3528037).

CMA Calgary

  • The following areas outside of CMA have been included: Ghost Lake (4815027), Waiparous (4815030), Stoney 142, 143, 144 (4815802),  8% of Kananaskis (4815013), 36% of Bighorn No.8 (4815015), 27% of Kneehill County (4805041), Acme (4805044), Linden (4805046), 4% of Wheatland County (4805012), 2% of Mountain View County (4806028).

  • The following areas within the CMA have been excluded: 10% of Rocky View No. 44 (4806014).

CMA Edmonton

  • The following areas outside of CMA have been included: Nakamun Park (4813003), Val Quentin (4813005), West Cove (4813006), Yellowstone (4813007), Ross Haven (48 13 008), Castle Island (4813009), Sunset Point (4813011), Alberta Beach (4813012), Onoway (4813014), 4% of Alexis 133 (4813811), 8% of Wetaskiwin County No.10 (4811001), Argentina Beach (4811003), Silver Beach (4811009), 57% of Lac Ste. Anne County (4813001), Gibbons (4811064), Westlock County (4813028), 96% of Thorhild County No. 7 (4813036), Thorhild (4813042), Sandy Beach (4813016), Sunrise Beach (4813017), Clearwater 175 (4816823).

  • The following areas within the CMA have been excluded: 11% of Parkland County (4811034), Seba Beach (4811038), Betula Beach (4811039), Point Alison (4811041), 10% of Leduc County (4811012), 2% of Golden Days (4811023), 6% of Sturgeon County (4811059).

CMA Greater Sudbury

  • The following areas within the CMA have been excluded: Wahnapitei 11 (3553040), Whitefish Lake 6 (3552051).

CMA Guelph

  • The following areas within the CMA have been excluded: Guelph/Eramosa (3523009).

CMA Halifax –

Perfect match.

CMA Hamilton

  • The following areas within the CMA have been excluded: Burlington (3524002), Grimsby (3526065).

CMA Kelowna -

Perfect match.

CMA Kingston

  • The following areas within the CMA have been excluded: Frontenac Islands (3510005).

CMA Kitchener

  • The following areas outside of CMA have been included: Wellesley (3530027), Wilmot (3530020).

CMA London

  • The following areas outside of CMA have been included: Newbury (3539002), Southwest Middlesex (3539005), Chippewas of the Thames First Nation 42 (3539017), Munsee-Delaware Nation 1 (3539018), Oneida 41 (3539021), North Middlesex (3539041), Lucan Biddulph (3539060).

  • The following areas within the CMA have been excluded: Southwold (3534024), Central Elgin (3534020).

CMA Moncton

  • The following areas outside of CMA have been included: 40% of Brunswick (1304016), 10% of Cardwell (1305026), 50% of Havelock (1305028), Hopewell (1306001), Riverside-Albert (1306003), Harvey (1306004), Alma (1306006), Alma (1306007), Salisbury (1307024), Petitcodiac (1307029).

  • The following areas within the CMA have been excluded: Saint-Paul (1308008), Dorchester (1307011), Dorchester (1307012), Memramcook (1307013), Fort Folly 1 (1307014).

CMA Montréal

  • The following areas outside of CMA have been included: Rivière-Beaudette (2471005), Saint-Télesphore (2471015), Saint-Polycarpe (2471020), Les Coteaux (2471033), Saint-Clet (2471045), Pointe-Fortune (2471140), Rigaud (2471133), Très-Saint-Rédempteur, (2471125), Sainte-Marthe, (2471110), Sainte-Justine-de-Newton, (2471115), Sainte-Jean-Baptiste (2457033), Calixa-Lavallée (2459030), Contrecoeur (2459035).

  • The following areas within the CMA have been excluded: Lavaltrie (2452007), Gore (2476025), L’Épiphanie (2460035), L’Épiphanie (2460040).

CMA Oshawa

  • Not currently used due to the fact that data would have to be based on estimates from Durham Regional Police.

  • Special Note – 36% of the three areas comprising the Oshawa CMA have been included in Toronto (Whitby 3518009, Oshawa 3518013 and Clarington 3518017).

CMA Ottawa-Gatineau (Ontario Portion)

  • The following areas outside of CMA have been included: 62% of The Nation / La Nation (3502025).

CMA Ottawa-Gatineau (Quebec Portion)

  • The following areas outside of CMA have been included: Notre-Dame-de-la-Salette (2482010).

  • The following areas within the CMA have been excluded: Denholm (2483005).

CMA Peterborough -

Perfect match.

CMA Québec

  • The following areas outside of CMA have been included: Sainte-Anne-de-Beaupré (2421030), Beaupré (2421025), Saint-Louis-de-Gonzague-du-Cap-Tourmente (2421015) Saint-Joachim (2421020), Saint-Tite-des-Caps (2421005), Saint-Ferréol-les-Neiges (2421010), Sault-au-Cochon (2421902), Lac-Jacques-Cartier (2421904), Lac-Croche (2422902).

  • The following areas within the CMA have been excluded: Saint-Lambert-de-Lauzon (2426070), Beaumont (2419105), Saint-Henri (2419068).

CMA Regina

  • The following areas outside of CMA have been included: Findlater (4706062), Bethune (4706061), Dufferin No.190, (4706059), Silton (4706077), Kannata Valley (4706075), South Qu'Appelle (4706034), Lajord No. 128 (4706011).

  • The following areas within the CMA have been excluded: Pense No. 160 (4706021), Pense (4706023), Belle Plaine (4706022).

CMA Saguenay

  • The following areas within the CMA have been excluded: Saint-Honoré (2494060), Saint-Fulgence (2494035).

CMA Saint John

  • The following areas outside of CMA have been included: Wickham (1304008), 80% of Johnston (1304014), 60% of Brunswick (1304016), Hammond (1305001), Norton (1305016), Norton (1305018), Sussex (1305021), Sussex (1305022), Sussex Corner (1305023), Waterford (1305024), 90% of Cardwell (1305026), 50% of Havelock (1305028), Studholm (1305031), Springfield (1305034), Kars (1305036).

  • The following areas within the CMA have been excluded: Musquash (1301016), Lepreau (1302008).

CMA Saskatoon

  • The following areas outside of CMA have been included: Ruddell (4716003), Maymont (4716004), Mayfield No. 406 (4716005), Great Bend No. 405 (4716008), Radisson (4716009), Borden (4716011), Rosedale No. 283 (4711031), Hanley (4711032), Lost River No. 313 (4711059), Kenaston (4711036), McCraney No. 282 (4711034), Bladworth (4711038), Viscount (4711092), Plunkett (4711094), Viscount No. 341 (4711091), Wolverine No. 340 (4711096). Bayne No. 371 (4715011), Bruno (4715012), Grant No. 372 (4715014), Prud’Homme (4715016), Vonda (4715017), Aberdeen No. 373 (4715018), Aberdeen (4715019).

CMA Sherbrooke

  • The following areas outside of CMA have been included: Sainte-Catherine-de-Hatley (2445060), Austin (2445085), Orford (2445115).

  • The following areas within the CMA have been excluded: North Hatley (2445050), Hatley (2445055), Ascot Corner (2441055), Saint-Denis-de-Brompton (2442025), Stoke (2442005), Compton (2444071), Waterville (2444080).

CMA St. Catharines-Niagara

  • The following areas outside of CMA have been included: Grimsby (3526065), West Lincoln (3526021).

CMASt. John’s

  • The following areas within the CMA have been excluded: Bay Bulls (1001557), Witless Bay (1001559).

CMAThunder Bay

  • The following areas within the CMA have been excluded: Neebing (3558001), Gillies (3558012), O’Connor (3558016), Conmee (3558019), Fort William 52 (3558003).

CMA Toronto

  • The following areas within the CMA have been excluded: Bradford West Gwillimbury (3543014).

  • The following areas outside of CMA have been included: 60% of Burlington (3524002), Adjala Tosorontio TP (3543003), 78% of Essa TP (3543021).
  • Special Note – 36% of the following areas (which are handled by the Durham Regional Police) have been included in Toronto: Pickering (3518001), Ajax (3518005), 3518009 (Whitby), 3518013 (Oshawa), Clarington (3518017), Scugog (3518020), Mississaugas of Scugog Island (3518022), Uxbridge (3518029), and Brock (3518039).

CMA Trois-Rivières

  • The following areas outside of CMA have been included: Deschaillons-sur-Saint-Laurent (2438070), Saint-Pierre-les-Becquets (2438065), Sainte-Cécile-de-Lévrard (2438060), Parisville (2438055), Fortierville (2438047), Sainte-Sophie-de-Lévrard (2438040), Sainte-Françoise (2438035), Manseau (2438028), Sainte-Marie-de-Blandford (2438015), Lemieux (2438020), Saint-Sylvère (2438005).

  • The following areas within the CMA have been excluded: Wôlinak (2438802), Saint-Maurice (2437230), Champlain (2437220).

CMA Vancouver

  • The following areas outside of CMA have been included: 69% of Squamish-Lillooet D (5931021), Cheakamus 11 (5931801).

CMA Victoria

  • The following areas outside of CMA have been included: Capital H (Part 2) (5917056), Gordon River 2 (5917815), Pacheena 1 (5917816), 3% of Capital G (5917029).

CMA Windsor -

Perfect match.

CMA Winnipeg

  • The following areas outside of CMA have been included: 10% of Alexander (4601071), Brokenhead (4612054), Cartier (4610043), Niverville (4602046), St-Pierre-Jolys (4602037), 10% of Hanover (4602041), De Salaberry (46 02 032), St. Andrews (4613043), Dunnottar (4613049).

  • The following areas within the CMA have been excluded: 50% of Rosser (4614015).

Notes

  1. Source: Statistics Canada, Demography Division and Canadian Centre for Justice Statistics

Accuracy of reported data is important as it will be used for programs to assist growers.

Confidential when completed

This survey is conducted under the authority of the Statistics Act, Revised Statutes of Canada, 1985, c.  S‑19. Completion of this questionnaire is a legal requirement under the Statistics Act.

Si vous préférez ce questionnaire en français, veuillez cocher la boîte.

The purpose of this survey is to obtain information for the estimation of area, production and value of fruit and vegetable crops in Canada. The information provided is used to monitor the impact of the free trade agreement and to review tariff implementation levels.

Instructions for the fall survey of fruits and vegetables

  1. This questionnaire is to assist you in answering a telephone survey. Complete this form and keep it by your telephone. An interviewer from Statistics Canada will telephone you between November 2 and November 27 for this information. Do not mail this questionnaire, it is for your records.
  2. Please answer all questions that apply to your operation.
  3. Use your records, if possible. Otherwise, enter your best estimate.
  4. Thank you for your cooperation.

For your records only, do not mail

A. Review the information on the label. If any information is incorrect or missing, please make the necessary corrections in the boxes below.

  • Farm Name (if applicable)
  • Corporation Name (if applicable)

Main operator

  • Surname or Family Name
  • Usual First Name and Initial
  • Area Code
  • Telephone
  • Area Code
  • Fax
  • Location of alternate telephone
  • Area Code
  • Telephone
  • R.R.
  • Box No.
  • Number and Street Name
  • Postal Code
  • Post Office (name of city, town or village where mail is received)
  • Email Address (if applicable)

Partner

  • Partner’s Surname or Family Name
  • Partner’s Usual First Name and Initial
  • Area Code
  • Telephone
  • Area Code
  • Fax
  • Location of alternate telephone
  • Area Code
  • Telephone
  • R.R.
  • Box No.
  • Number and Street Name
  • Postal Code
  • Post Office (name of city, town or village where mail is received)
  • Check this box if the address and telephone is the same as main operator

Partner

  • Partner’s Surname or Family Name
  • Partner’s Usual First Name and Initial
  • Area Code
  • Telephone
  • Area Code
  • Fax
  • Location of alternate telephone
  • Area Code
  • Telephone
  • R.R.
  • Box No.
  • Number and Street Name
  • Postal Code
  • Post Office (name of city, town or village where mail is received)
  • Check this box if the address and telephone is the same as main operator.

B. Did you grow any fruits or vegetables for sale in 2009?
Do not include greenhouse fruits or vegetables.

  • Yes Go to Section C
  • No Go to Section F

C. Fruits (Based on the 2009 crop year)  Go to Section D for vegetables

Table 1

Please indicate the unit ( x ) in which you are reporting-
Acres
Hectares
Arpents

In columns 1, 1b, 2 and 3 report the total and producing area on your farm, or on any other farm operated by you on a rental or share basis, that was used to produce fruit and/or vegetables.

Please report everything that was harvested. If reporting in "bags" or "crates" please indicate weight, for example, 50 lb bags, 35 kg crates etc.

Quantity sold and total value received  Give your best estimate of final use of sales (fresh or processed) when commodities are to be sold to cooperatives, wholesalers and packers.

Fruits (vegetables are in Section D)

1
Total Area (producing + non-producing) Include rental area Report area to the nearest (1/10)

1b
Total Harvested Area (Producing/Bearing Area)

Harvested area

4
Total Production 2009
Please indicate the unit in which you are reporting
lb
kg s

a) Farm and Retail Sales (fresh) Include sales from the farm, U-pick system, open-air stalls and farmers' market sales, sales to retailers, packers, brokers and door-to-door sales.

b) Sales to Processors Include sales for processing, canning, pickling and for juice.

2
Fresh Market Area

3
Processing Market Area

5
Quantity sold

6
Total value received ($)

7
Quantity sold

8
Total value received ($)

1. Apples

 

 

 

 

 

 

 

 

 

2. Apricots

 

 

 

 

 

 

 

 

 

3. Blueberries - Highbush

 

 

 

 

 

 

 

 

 

4. Blueberries - Lowbush

 

 

 

 

 

 

 

 

 

5. Cherries - Sweet

 

 

 

 

 

 

 

 

 

6. Cherries - Sour

 

 

 

 

 

 

 

 

 

7. Cranberries

 

 

 

 

 

 

 

 

 

8. Grapes - Labrusca (Table)

 

 

 

 

 

 

 

 

 

9. Grapes - Vinifera, French Hybrid (Wine)

 

 

 

 

 

 

 

 

 

10. Kiwis

 

 

 

 

 

 

 

 

 

11. Nectarines

 

 

 

 

 

 

 

 

 

12. Peaches (Fresh + Clingstone)

 

 

 

 

 

 

 

 

 

13. Pears

 

 

 

 

 

 

 

 

 

14. Plums and Prunes

 

 

 

 

 

 

 

 

 

15. Raspberries

 

 

 

 

 

 

 

 

 

16. Saskatoon Berries

 

 

 

 

 

 

 

 

 

17. Strawberries

 

 

 

 

 

 

 

 

 

18. Other Fruits

 

 

 

 

 

 

 

 

 

Total Fruits

 

 

 

 

 

 

 

 

 

 

D. Vegetables (Based on the 2009 crop year)

Table 2

Please indicate the unit ( x ) in which you are reporting-
Acres
Hectares
Arpents

In columns 1, 1b, 2 and 3 report the total and producing area on your farm, or on any other farm operated by you on a rental or share basis, that was used to produce fruit and/or vegetables.

Please report everything that was harvested. If reporting in "bags" or "crates" please indicate weight, for example, 50 lb bags, 35 kg crates etc.

Quantity sold and total value received  Give your best estimate of final use of sales (fresh or processed) when commodities are to be sold to cooperatives, wholesalers and packers.

Vegetables

1
Total Area (producing + non-producing) Include rental area Report area to the nearest (1/10)

1b
Total Harvested Area (Producing/Bearing Area)

Harvested area

4
Total Production 2009
Please indicate the unit in which you are reporting
lb
kg s

Farm and Retail Sales (fresh) Include sales from the farm, U-pick system, open-air stalls and farmers' market sales, sales to retailers, packers, brokers and door-to-door sales.

b) Sales to Processors Include sales for processing, canning, pickling and for juice.

2
Fresh Market Area

3
Processing Market Area

5 Quantity sold

6 Total value received ($)

7 Quantity sold

8 Total value received ($)

19. Asparagus

 

 

 

 

 

 

 

 

 

20. Beans - Green or Wax

 

 

 

 

 

 

 

 

 

21. Beets

 

 

 

 

 

 

 

 

 

22. Broccoli

 

 

 

 

 

 

 

 

 

23. Brussels Sprouts

 

 

 

 

 

 

 

 

 

24. Corn - Sweet (exclude Grain Corn)

 

 

 

 

 

 

 

 

 

25. Cabbage - Chinese

 

 

 

 

 

 

 

 

 

26. Cabbage - Regular

 

 

 

 

 

 

 

 

 

27. Carrots - Baby

 

 

 

 

 

 

 

 

 

28. Carrots - Regular

 

 

 

 

 

 

 

 

 

29. Cauliflower

 

 

 

 

 

 

 

 

 

30. Celery

 

 

 

 

 

 

 

 

 

31. Cucumbers & Gherkins

 

 

 

 

 

 

 

 

 

32. Garlic

 

 

 

 

 

 

 

 

 

33. Leeks

 

 

 

 

 

 

 

 

 

34. Lettuce - Head

 

 

 

 

 

 

 

 

 

35. Leaf Lettuce ( i.e. Romaine)

 

 

 

 

 

 

 

 

 

36. Melons (Watermelon)

 

 

 

 

 

 

 

 

 

37. Other Melons (include Cantaloupe, Winter Melons, etc. )

 

 

 

 

 

 

 

 

 

38. Dry Onions

 

 

 

 

 

 

 

 

 

39. Green Onions, Shallots

 

 

 

 

 

 

 

 

 

40. Parsley

 

 

 

 

 

 

 

 

 

41. Parsnips

 

 

 

 

 

 

 

 

 

42. Green Peas

 

 

 

 

 

 

 

 

 

43. Peppers

 

 

 

 

 

 

 

 

 

44. Potatoes

 

 

 

 

 

 

 

 

 

45. Pumpkins

 

 

 

 

 

 

 

 

 

46. Radishes

 

 

 

 

 

 

 

 

 

47. Rhubarb

 

 

 

 

 

 

 

 

 

48. Rutabagas and Turnips

 

 

 

 

 

 

 

 

 

49. Spinach

 

 

 

 

 

 

 

 

 

50. Squash and Zucchinis

 

 

 

 

 

 

 

 

 

51. Tomatoes

 

 

 

 

 

 

 

 

 

52. Other Vegetable Specify

 

 

 

 

 

 

 

 

 

53. Other Vegetable Specify

 

 

 

 

 

 

 

 

 

Total Vegetables

 

 

 

 

 

 

 

 

 

 

E. What percentage of your fresh market sales were sold by your farm directly to the public?
_______%

Since the harvest or marketing season may not have been complete when we contacted you last year, we are going to review the information you provided us last year for certain storable commodities. Accuracy of reported data is important as it is to be used for programs to assist growers.

F. Fruit and vegetables confirmation from the 2008 crop year

Table 3

Please indicate the unit ( x ) in which you are reporting-
Acres
Hectares
Arpents

In columns 1, 1b, 2 and 3 report the total and producing area on your farm, or on any other farm operated by you on a rental or share basis, that was used to produce fruit and/or vegetables.

Please report everything that was harvested. If reporting in "bags" or "crates" please indicate weight, for example, 50 lb bags, 35 kg crates etc.

Quantity sold and total value received  Give your best estimate of final use of sales (fresh or processed) when commodities are to be sold to cooperatives, wholesalers and packers.

Fruit and vegetables

1
Total Area (producing + non-producing) Include rental area Report area to the nearest (1/10)

1b
Total Harvested Area (Producing/Bearing Area)

Harvested area

4
Total Production 2008
Please indicate the unit in which you are reporting
lb
kg s

Farm and Retail Sales (fresh) Include sales from the farm, U-pick system, open-air stalls and farmers' market sales, sales to retailers, packers, brokers and door-to-door sales.

b) Sales to Processors
Include sales for processing, canning, pickling and for juice.

2
Fresh Market Area

3
Processing Market Area

5 Quantity sold

6 Total value received ($)

7 Quantity sold

8 Total value received ($)

1. Apples

 

 

 

 

 

 

 

 

 

2. Cabbage - Regular

 

 

 

 

 

 

 

 

 

3. Carrots - Regular

 

 

 

 

 

 

 

 

 

4. Dry Onions

 

 

 

 

 

 

 

 

 

5. Rutabagas and Turnips

 

 

 

 

 

 

 

 

 

 

G. Federal/Provincial agreement to share information

Newfoundland and Labrador, New Brunswick, Ontario, Manitoba, Saskatchewan and British Columbia residents:

To reduce the number of federal and provincial surveys and to ensure more uniform statistics, Statistics Canada has entered into data sharing agreements under Section 12 of the Statistics Act with the Newfoundland and Labrador Department of Forest Resources and Agri-foods, New Brunswick Ministry of Agriculture and Rural Development, Ontario Ministry of Agriculture, Food and Rural Affairs, the Manitoba Department of Agriculture, the Saskatchewan Department of Agriculture and Food and the British Columbia Ministry of Agriculture, Fisheries and Food. The information collected and shared will be kept confidential and only used for statistical purposes. Under Section 12 of the Statistics Act you may refuse to share your information. Address any comments or questions to the Agriculture Division, Statistics Canada, Ottawa, Ontario K1A 0T6.

Do you agree to share this information? ((x) one box)

  • Yes
  • No

Quebec Residents:

To avoid duplication of enquiry, this survey is conducted under a co-operative agreement with the Institut de la statistique du Québec pursuant to Section 11 of the Statistics Act. The Quebec Statistics Act includes the same provisions for confidentiality and penalties for disclosure of information as the Federal Statistics Act.

H. If you answered items in Sections C or D please skip this Section H.

A. Are you temporarily out of both fruit and vegetable production?

  • Yes
  • No

B. Are you permanently out of both fruit and vegetable production?

  • Yes
  • No

C. Were you ever a producer of fruits or vegetables?

  • Yes
  • No

D. Are you still operating a farm?

  • Yes Thank you for participating in this survey
  • No, out of business

Out of business
1. Why is the farm out of business?
(Office use only)

2. Does the operator plan to resume operating the farm in the future?

Yes, When   year/month
No
Don't know

No, operator changed

Change of operator

3. Why has the farm changed operators? ((x) one box)

a) sold  go to 4
b) rented/leased (period)  year(s)  go to 4
c) farm operator retired
d) farm operator passed away
e) other (specify)

4. To whom did you sell/rent the operation?

  • Name:
  • Phone:
  • Address:
  • No, other reason

Thank you for your cooperation in completing this survey.

Comments:

Contact Us Module on the Statistics Canada Web Site - Privacy impact assessment

Introduction

The “Contact Us” module on the Statistics Canada Web site has been re-designed to reflect the Government of Canada Common Look and Feel standards. It was tested for usability and functionality to ensure ease-of-use by the public when requesting information from Statistics Canada. Because of this re-design, a Privacy Impact Assessment has been conducted.

Objectives

A privacy impact assessment for the “Contact Us” module was created to determine if there were any privacy, confidentiality and security issues associated with it, and if so, to make recommendations for their resolution or mitigation.

Description

Via the “Contact Us” module, persons are asked to provide their name, telephone number, and their e-mail address on an online request form for which the information they provide will be used to contact them in response to their enquiries.

Persons are informed via a privacy notice posted on the module screen that Statistics Canada will not sell, distribute, trade or transfer their personal information to other government departments, businesses, organizations or individuals outside the Agency for commercial or any other purposes, unless required by law. The information they provide will be kept confidential and will be used only for the specified purposes (i.e., responding to their request).

Conclusion

This assessment of the re-designed “Contact Us” module did not identify any privacy risks that cannot be managed using existing safeguards.

Finance Service Request Management - Privacy impact assessment

Introduction

The Finance Service Request Management (FIN-SRM) application will serve as a mechanism for Statistics Canada employees to submit requests related to financial operations, planning and systems. The FIN-SRM is part of the Agency’s Helpdesk Expert Automation Tool (HEAT) Service Request Management application which is also used by various other Statistics Canada divisions including the Informatics Technology Services Division to manage IT-related requests and by the Human Resources Branch to manage compensation and staffing requests. The security model developed for the FIN-SRM will safeguard and protect employees’ personal information and limit the number of people who have access to this information.

Objective

A privacy impact assessment for the Finance Service Request Management application was conducted to determine if there were any privacy, confidentiality and security issues, and if so, to make recommendations for their resolution or mitigation.

Description

Statistics Canada’s Finance, Planning and Evaluation Branch has identified a need to change the process by which employees submit requests to the various sections in the Financial Management Operations and Systems Division (FMOSD) and the Operational Planning and Programming Division (OPPD). In order to streamline the work flow and improve service to clients, modifications are being made to the Agency’s Helpdesk Expert Automation Tool Service Request Management application. This will allow employees to use a common application to submit inquiries electronically to the various FMOSD and OPPD sections as well as allowing them to view the status of their requests.

Conclusion

This privacy impact assessment did not identify any privacy risks that cannot be managed using either current safeguards or others that have been specifically developed for the implementation of the FIN-SRM.

Jobs at StatCan's Research Data Centres

What are the Research Data Centres?

Research Data Centres (RDCs) are located in over 20 universities across Canada. They provide on-site, secure access to detailed Statistics Canada microdata for researchers. The RDC program is a joint initiative of Statistics Canada, the Social Sciences and Humanities Research Council (SSHRC), the Canadian Institutes of Health Research (CIHR), the Canada Foundation for Innovation (CFI), and participating universities.

The Research Data Centres are staffed by on-site facilitators who assist researchers by answering questions about what StatCan information is available, how to access it and suggesting potentially relevant holdings.

The role of the Research Data Centres

  • Help strengthen Canada’s social research capacity
  • Support social and economic policy analysis
  • Maximize the public good gained from StatCan’s data holdings

Career opportunities at the Research Data Centres

Positions offered across Canada, include

  • Entry-level term StatCan positions
  • Mid-level term and permanent StatCan positions
  • Mid-level permanent StatCan positions at Head Office in Ottawa.

What qualifications are we looking for?

  • A Masters degree or Doctorate
  • Good quantitative analysis skills
  • Some knowledge of Statistics Canada or other major sources of data
  • Strong interpersonal skills required to liaise with researchers using the Research Data Centres

What is in it for you?

  • As an RDC research facilitator, you are an employee of Statistics Canada and have access to training, benefits and opportunities for promotion at head office
  • You will be part of a dynamic and growing division at Statistics Canada where you can build networks and collaborate on projects
  • You will make a contribution to your country by enabling researchers to produce evidence that will guide public policy

To apply, go to job opportunities.

Quarterly Survey of Telecommunications

2nd Quarter 2010

Business Special Surveys and Technology Statistics Division

This report covers the period from: month 2010 to month 2010

Confidential when completed

Respondent company

  • Legal Name
  • Operating Name
  • Contact Person
  • Job Title
  • Street
  • City
  • Province
  • Postal Code
  • Telephone
  • Fax
  • E-mail
  • Website

Correct as required

  • Legal Name
  • Operating or Trade Name (if different from legal name)
  • Contact person responsible for this survey (please print clearly)
  • Job Title
  • Street
  • City
  • Province
  • Postal Code
  • Telephone
  • Fax
  • E-mail
  • Website

Information for Respondents

Survey Purpose

This survey collects financial and operating data for the statistical measurement and analysis of the telecommunications industry. These data will be aggregated to produce national estimates of activity by industry. Those estimates are used by government, the private sector, international telecommunications organizations, academics, analysts, and the general public to better understand this sector's role in the social and economic fabric of Canada.

Authority

This quarterly survey is conducted under the authority of the Statistics Act, Revised Statutes of Canada 1985, Chapter S19. Completion of this questionnaire is a legal requirement under this Act.

Confidentiality

The Statistics Act protects the confidentiality of information collected by Statistics Canada. Your answers are confidential. Statistics Canada is prohibited by law from releasing any information it collects which could identify any person, business, or organization, unless consent has been given by the respondent or as permitted by the Statistics Act. The confidentiality provisions of the Statistics Act are not affected by either the Access to Information Act or any other legislation. Therefore, for example, the Canada Revenue Agency cannot access identifiable survey records from Statistics Canada. Information from this survey will be used for statistical purposes only and will be published in aggregate form only.

Data Sharing Agreements

To reduce response burden and to ensure more uniform statistics, Statistics Canada has entered into a data sharing agreement under section 12 of the Statistics Act to share information from all respondents with the Canadian Radio-television and Telecommunications Commission (CRTC).

Subsection 12(2) of the Statistics Act provides that where a respondent gives notice in writing to the Chief Statistician that the respondent objects to the sharing of the information by Statistics Canada, the information not be shared with the department or corporation unless the department or corporation is authorized by law to require the respondent to provide the information.

The CRTC is authorized by law to require the respondent to provide the information under section 37 of the Telecommunications Act. Information provided to the CRTC will be treated in accordance with the requirements of section 39 of the Telecommunications Act.

Planned Record Linkage

To enhance the data from this survey, Statistics Canada may combine it with information from other surveys or from administrative sources..

Return Procedures

Please return the completed questionnaire(s) within 30 days of receipt by facsimile to (613) 951-9920. If you anticipate difficulty in making this deadline, please inform Statistics Canada of your expected filing date.

Reporting Instructions

Please complete all questions that pertain to your operations.

To reduce the chances of call-backs to verify data, please record "N/A" for those items that are not relevant to your company.

Detailed instructions and definitions of terms used in the questionnaire are found in the Reporting Guide.

Assistance

If you require assistance, please contact:
Jo Anne Lambert
Telephone: (613) 951-6673
Facsimile: (613) 951-9920
E-mail: joanne.lambert@statcan.gc.ca

Heather Berrea
Telephone: (613) 951-8613
Facsimile: (613) 951-9920
E-mail: heather.berrea@statcan.gc.ca

Thank you for your co-operation

Revenues (in thousands for the quarter)

1. Telecommunications operating revenues

  1. Local and access (include basic local service, optional local features, contribution, equipment, and other local and access)
  2. Long distance (include settlement)
  3. Data
  4. Private line
  5. Internet
  6. Mobile and paging
    • Retail
    • Wholesale
  7. Broadcast distribution (basic and non-basic programming)
  8. Other operating revenues
  • Total operating revenues

Network and subscribers (in thousands at quarter end)

2. Number of fixed network lines by market (Voice-grade equivalents) - Access dependent and independent

  1. Residential
  2. Business
  3. Wholesale
  4. Lines for internal use
  • Total PSTN lines

3. Number of mobile and paging subscriptions

  1. Retail (Residential and business)
  2. Wholesale
  • Total mobile and paging subscriptions

4. Number of Internet subscriptions

  1. Dial-up
  2. High speed - Cable modem
  3. High speed - Digital subscriber line (DSL)
  4. High speed - Other
  • Total number of Internet subscriptions

5. Number of multi-channel video services subscriptions

  1. By phone line
  2. By cable
  3. By satellite
  4. Other
  • Total multi-channel video services subscriptions

Volume (in thousands at quarter end)

6. Long distance minutes - Fixed

  1. Retail
    • April
    • May
    • June
    • Total
  2. Wholesale
    • April
    • May
    • June
    • Total
  • Total long distance minutes
    • April
    • May
    • June
    • Total

Note: Please include Domestic, US, and International long distance minutes.

7. Number of short messaging service (SMS)

  1. To mobile devices
  2. From mobile devices
  • Total number of short messaging service (SMS)

8. Mobile voice minutes

  1. Toll minutes (Long distance)
  2. Non-toll minutes (Basic voice)
  • Total mobile voice minutes

Capital expenditures (in thousands for the quarter)

9. Capital expenditures

Remarks

Certification

Please print the name of the person responsible for this return:

Signature:

I certify that the information provided in this report is complete and correct to the best of my knowledge.

  • Phone no.
  • Position
  • Date

Monthly Retail Trade Survey (MRTS) Data Quality Statement

Objectives, uses and users
Concepts, variables and classifications
Coverage and frames
Sampling
Questionnaire design
Response and nonresponse
Data collection and capture operations
Editing
Imputation
Estimation
Revisions and seasonal adjustment
Data quality evaluation
Disclosure control

1. Objectives, uses and users

1.1. Objective

The Monthly Retail Trade Survey (MRTS) provides information on the performance of the retail trade sector on a monthly basis, and when combined with other statistics, represents an important indicator of the state of the Canadian economy.

1.2. Uses

The estimates provide a measure of the health and performance of the retail trade sector. Information collected is used to estimate level and monthly trend for retail sales. At the end of each year, the estimates provide a preliminary look at annual retail sales and performance.

1.3. Users

A variety of organizations, sector associations, and levels of government make use of the information. Retailers rely on the survey results to compare their performance against similar types of businesses, as well as for marketing purposes. Retail associations are able to monitor industry performance and promote their retail industries. Investors can monitor industry growth, which can result in better access to investment capital by retailers. Governments are able to understand the role of retailers in the economy, which aids in the development of policies and tax incentives. As an important industry in the Canadian economy, governments are able to better determine the overall health of the economy through the use of the estimates in the calculation of the nation’s Gross Domestic Product (GDP).

2. Concepts, variables and classifications

2.1. Concepts

The retail trade sector comprises establishments primarily engaged in retailing merchandise, generally without transformation, and rendering services incidental to the sale of merchandise.

The retailing process is the final step in the distribution of merchandise; retailers are therefore organized to sell merchandise in small quantities to the general public. This sector comprises two main types of retailers, that is, store and non-store retailers. The MRTS covers only store retailers. Their main characteristics are described below. Store retailers operate fixed point-of-sale locations, located and designed to attract a high volume of walk-in customers. In general, retail stores have extensive displays of merchandise and use mass-media advertising to attract customers. They typically sell merchandise to the general public for personal or household consumption, but some also serve business and institutional clients. These include establishments such as office supplies stores, computer and software stores, gasoline stations, building material dealers, plumbing supplies stores and electrical supplies stores.

In addition to selling merchandise, some types of store retailers are also engaged in the provision of after-sales services, such as repair and installation. For example, new automobile dealers, electronic and appliance stores and musical instrument and supplies stores often provide repair services, while floor covering stores and window treatment stores often provide installation services. As a general rule, establishments engaged in retailing merchandise and providing after sales services are classified in this sector. Catalogue sales showrooms, gasoline service stations, and mobile home dealers are treated as store retailers.

2.2. Variables

Sales are defined as the sales of all goods purchased for resale, net of returns and discounts. This includes commission revenue and fees earned from selling goods and services on account of others, such as selling lottery tickets, bus tickets, and phone cards. It also includes parts and labour revenue from repair and maintenance; revenue from rental and leasing of goods and equipment; revenues from services, including food services; sales of goods manufactured as a secondary activity; and the proprietor’s withdrawals, at retail, of goods for personal use. Other revenue from rental of real estate, placement fees, operating subsidies, grants, royalties and franchise fees are excluded.

Trading Location is the physical location(s) in which business activity is conducted in each province and territory, and for which sales are credited or recognized in the financial records of the company. For retailers, this would normally be a store.

Constant Dollars: The value of retail trade is measured in two ways; including the effects of price change on sales and net of the effects of price change. The first measure is referred to as retail trade in current dollars and the latter as retail trade in constant dollars. The method of calculating the current dollar estimate is to aggregate the weighted value of sales for all retail outlets. The method of calculating the constant dollar estimate is to first adjust the sales values to a base year, using the Consumer Price Index, and then sum up the resulting values.

2.3. Classification

The Monthly Retail Trade Survey is based on the definition of retail trade under the NAICS (North American Industry Classification System). NAICS is the agreed upon common framework for the production of comparable statistics by the statistical agencies of Canada, Mexico and the United States. The agreement defines the boundaries of twenty sectors. NAICS is based on a production-oriented, or supply based conceptual framework in that establishments are groups into industries according to similarity inproduction processes used to produce goods and services.

Estimates appear for 21 industries based on special aggregations of the 2007North American Industry Classification System (NAICS) industries. The 21 industries are further aggregated to 11 sub-sectors.

Geographically, sales estimates are produced for Canada and each province and territory.

3. Coverage and frames

Statistics Canada’s Business Register ( BR) provides the frame for the Monthly Retail Trade Survey. The BR is a structured list of businesses engaged in the production of goods and services in Canada. It is a centrally maintained database containing detailed descriptions of most business entities operating within Canada. The BR includes all incorporated businesses, with or without employees. For unincorporated businesses, the BR includes all employers with businesses, and businesses with no employees with annual sales that have a Goods and Services Tax (GST) or annual revenue that declares individual taxes.  annual sales greater than $30,000 that have a Goods and Services Tax (GST) account (the BR does not include unincorporated businesses with no employees and with annual sales less than $30,000).

The businesses on the BR are represented by a hierarchical structure with four levels, with the statistical enterprise at the top, followed by the statistical company, the statistical establishment and the statistical location. An enterprise can be linked to one or more statistical companies, a statistical company can be linked to one or more statistical establishments, and a statistical establishment to one or more statistical locations.

The target population for the MRTS consists of all statistical establishments on the BR that are classified to the retail sector using the North American Industry Classification System (NAICS) (approximately 200,000 establishments). The NAICS code range for the retail sector is 441100 to 453999. A statistical establishment is the production entity or the smallest grouping of production entities which: produces a homogeneous set of goods or services; does not cross provincial boundaries; and provides data on the value of output, together with the cost of principal intermediate inputs used, along with the cost and quantity of labour used to produce the output. The production entity is the physical unit where the business operations are carried out. It must have a civic address and dedicated labour.

The exclusions to the target population are ancillary establishments (producers of services in support of the activity of producing goods and services for the market of more than one establishment within the enterprise, and serves as a cost centre or a discretionary expense centre for which data on all its costs including labour and depreciation can be reported by the business), future establishments, establishments with a missing or a zero gross business income (GBI) value on the BR and establishments in the following non-covered NAICS:

  • 4541 (electronic shopping and mail-order houses)
  • 4542 (vending machine operators)
  • 45431 (fuel dealers)
  • 45439 (other direct selling establishments)

4. Sampling

The MRTS sample consists of 10,000 groups of establishments (clusters) classified to the Retail Trade sector selected from the Statistics Canada Business Register. A cluster of establishments is defined as all establishments belonging to a statistical enterprise that are in the same industrial group and geographical region. The MRTS uses a stratified design with simple random sample selection in each stratum. The stratification is done by industry groups (the mainly, but not only four digit level NAICS), and the geographical regions consisting of the provinces and territories, as well as three provincial sub-regions. We further stratify the population by size.

The size measure is created using a combination of independent survey data and three administrative variables: the annual profiled revenue, the GST sales expressed on an annual basis, and the declared tax revenue (T1 or T2). The size strata consist of one take-all (census), at most, two take-some (partially sampled) strata, and one take-none (non-sampled) stratum. Take-none strata serve to reduce respondent burden by excluding the smaller businesses from the surveyed population. These businesses should represent at most ten percent of total sales. Instead of sending questionnaires to these businesses, the estimates are produced through the use of administrative data.

The sample was allocated optimally in order to reach target coefficients of variation at the national, provincial/territorial, industrial, and industrial groups by province/territory levels. The sample was also inflated to compensate for dead, non-responding, and misclassified units.

MRTS is a repeated survey with maximisation of monthly sample overlap. The sample is kept month after month, and every month new units are added (births) to the sample.  MRTS births, i.e., new clusters of establishment(s), are identified every month via the BR’s latest universe. They are stratified according to the same criteria as the initial population. A sample of these births is selected according to the sampling fraction of the stratum to which they belong and is added to the monthly sample. Deaths occur on a monthly basis. A death can be a cluster of establishment(s) that have ceased their activities (out-of-business) or whose major activities are no longer in retail trade (out-of-scope). The status of these businesses is updated on the BR using administrative sources and survey feedback, including feedback from the MRTS. Methods to treat dead units and misclassified units are part of the sample and population update procedures.

5. Questionnaire design

The Monthly Retail Trade Survey incorporates the following sub-surveys:

Monthly Retail Trade Survey - R8

Monthly Retail Trade Survey (with inventories) – R8

Survey of Sales and Inventories of Alcoholic Beverages

The questionnaires collect monthly data on retail sales and the number of trading locations by province or territory and inventories of goods owned and intended for resale from a sample of retailers. The items on the questionnaires have remained unchanged for several years. For the 2004 redesign, the general questionnaires were subject to cosmetic changes only. The questionnaire for Sales and Inventories of Alcoholic Beverages underwent more extensive changes. The modifications were discussed with stakeholders and the respondents were given an opportunity to comment before the new questionnaire was finalized. If further changes are needed to any of the questionnaires, proposed changes would go through a review committee and a field test with respondents and data users to ensure its relevancy.

6. Response and nonresponse

6.1. Response and non-response

Despite the best efforts of survey managers and operations staff to maximize response in the MRTS, some non-response will occur. For statistical establishments to be classified as responding, the degree of partial response (where an accurate response is obtained for only some of the questions asked a respondent) must meet a minimumthreshold level below which the response would be rejected and considered a unit nonresponse.  In such an instance, the business is classified as not having responded at all.

Non-response has two effects on data: first it introduces bias in estimates when nonrespondents differ from respondents in the characteristics measured; and second, it contributes to an increase in the sampling variance of estimates because the effective sample size is reduced from that originally sought.

The degree to which efforts are made to get a response from a non-respondent is based on budget and time constraints, its impact on the overall quality and the risk of nonresponse bias.

The main method to reduce the impact of non-response at sampling is to inflate the sample size through the use of over-sampling rates that have been determined from similar surveys.

Besides the methods to reduce the impact of non-response at sampling and collection, the non-responses to the survey that do occur are treated through imputation. In order to measure the amount of non-response that occurs each month, various response rates are calculated. For a given reference month, the estimation process is run at least twice (a preliminary and a revised run). Between each run, respondent data can be identified as unusable and imputed values can be corrected through respondent data. As a consequence, response rates are computed following each run of the estimation process.

For the MRTS, two types of rates are calculated (un-weighted and weighted). In order to assess the efficiency of the collection process, un-weighted response rates are calculated. Weighted rates, using the estimation weight and the value for the variable of interest, assess the quality of estimation. Within each of these types of rates, there are distinct rates for units that are surveyed and for units that are only modeled fromadministrative data that has been extracted from GST files.

To get a better picture of the success of the collection process, two un-weighted rates called the ‘collection results rate’ and the ‘extraction results rate’ are computed. They are computed by dividing the number of respondents by the number of units that we tried to contact or tried to receive extracted data for them. Non-monthly reporters (respondents with special reporting arrangements where they do not report every month but for whom actual data is available in subsequent revisions) are excluded from both the numerator and denominator for the months where no contact is performed.

In summary, the various response rates are calculated as follows:

Weighted rates:

Survey Response rate (estimation) =
Sum of weighted sales of units with response status i / Sum of survey weighted sales

where i = units that have either reported data that will be used in estimation or are converted refusals, or have reported data that has not yet been resolved for estimation.

Admin Response rate (estimation) =
Sum of weighted sales of units with response status ii / Sum of administrative weighted sales

where ii = units that have data that was extracted from administrative files and are usable for estimation.

Total Response rate (estimation) =
Sum of weighted sales of units with response status i or response status ii / Sum of all weighted sales

Un-weighted rates:

Survey Response rate (collection) =
Number of questionnaires with response status iii/ Number of questionnaires with response status iv

where iii = units that have either reported data (unresolved, used or not used for estimation) or are converted refusals.

where iv = all of the above plus units that have refused to respond, units that were not contacted and other types of non-respondent units.

Admin Response rate (extraction) =
Number of questionnaires with response status vi/ Number of questionnaires with response status vii

where vi = in-scope units that have data (either usable or non-usable) that was extracted from administrative files

where vii = all of the above plus units that have refused to report to the administrative data source, units that were not contacted and other types of non-respondent units.

(% of questionnaire collected over all in-scope questionnaires)

Collection Results Rate =
Number of questionnaires with response status iii / Number of questionnaires with response status viii

where iii = same as iii defined above

where viii = same as iv except for the exclusion of units that were contacted because their response is unavailable for a particular month since they are non-monthly reporters.

Extraction Results Rate =
Number of questionnaires with response status ix / Number of questionnaires with response status vii

where ix = same as vi with the addition of extracted units that have been imputed or were out of scope

where vii = same as vii defined above

(% of questionnaires collected over all questionnaire in-scope we tried to collect)

All the above weighted and un-weighted rates are provided at the industrial group, geography and size group level or for any combination of these levels.

Use of Administrative Data

Managing response burden is an ongoing challenge for Statistics Canada. In an attemptto alleviate response burden and survey costs, especially for smaller businesses, the MRTS has reduced the number of simple establishments in the sample that are surveyed directly and instead derives sales data for these establishments from Goods and Service Tax (GST) files using a statistical model. The model accounts for differences between sales and revenue (reported for GST purposes) as well as for the time lag between the survey reference period and the reference period of the GST file.

For more information on the methodology used for modeling sales from administrative data sources, refer to ‘Monthly Retail Trade Survey: Use of Administrative Data’ under ‘Documentation’ of the IMDB.

Table 1 contains the weighted response rates for all industry groups as well as for total retail trade for each province and territory. For more detailed weighted response rates, please contact the Marketing and Dissemination Section at (613) 951-3549, toll free: 1-877-421-3067 or by e-mail at retailinfo@statcan.

6.2. Methods used to reduce non-response at collection

Significant effort is spent trying to minimize non-response during collection. Methods used, among others, are interviewer techniques such as probing and persuasion, repeated re-scheduling and call-backs to obtain the information, and procedures dealing with how to handle non-compliant (refusal) respondents.

If data are unavailable at the time of collection, a respondent's best estimates are also accepted, and are subsequently revised once the actual data become available.

To minimize total non-response for all variables, partial responses are accepted. In addition, questionnaires are customized for the collection of certain variables, such as inventory, so that collection is timed for those months when the data are available.

Finally, to build trust and rapport between the interviewers and respondents, cases are generally assigned to the same interviewer each month. This action establishes a personal relationship between interviewer and respondent, and builds respondent trust.

7. Data collection and capture operations

Collection of the data is performed by Statistics Canada’s Regional Offices.

Table 1
Weighted response rates by NAICS, for all provinces/territories: May 2010
  Weighted Response Rates
Total Survey Administrative
NAICS - Canada
Motor Vehicle and Parts Dealers 92.9 93.8 52.1
Automobile Dealers 96.1 96.5 41.5
New Car Dealers 97.5 97.5  
Used Car Dealers 74.5 79.2 41.5
Other Motor Vehicle Dealers 68.9 69.8 60.5
Automotive Parts, Accessories and Tire Stores 84.4 88.9 51.1
Furniture and Home Furnishings Stores 86.4 92.1 40
Furniture Stores 92.8 95.4 38.8
Home Furnishings Stores 74.8 84.7 40.4
Electronics and Appliance Stores 86.2 88.8 38.7
Building Material and Garden Equipment Dealers 85.7 88.5 45.7
Food and Beverage Stores 86.1 93 17.2
Grocery Stores 85.7 93.3 15.3
Grocery (except Convenience) Stores 88.1 95.6 14
Convenience Stores 58 64.7 23.7
Specialty Food Stores 64.5 73.4 29.6
Beer, Wine and Liquor Stores 93.5 96.2 21.8
Health and Personal Care Stores 90.2 93.6 61.2
Gasoline Stations 85.9 88.8 44.3
Clothing and Clothing Accessories Stores 85.1 87.4 34.3
Clothing Stores 85.2 87 41.9
Shoe Stores 87.7 90.5  
Jewellery, Luggage and Leather Goods Stores 81.5 86.3 16.4
Sporting Goods, Hobby, Book and Music Stores 79.1 85.6 14.2
General Merchandise Stores 98.5 99.3 4.5
Miscellaneous Store Retailers 80.5 87.9 26.6
Total 89.2 92.6 33.9
Regions
Newfoundland and Labrador 86.7 88.1 28
Prince Edward Island 87.2 88.4 8.5
Nova Scotia 94 95.7 53.8
New Brunswick 88.6 91.2 49.4
Québec 88.3 93.2 24.3
Ontario 90.2 93.2 39.8
Manitoba 91.3 92.4 53.4
Saskatchewan 91.2 93 37.8
Alberta 87.6 90.9 33.4
British Columbia 88.4 92.1 30.9
Yukon Territory 91.3 91.3  
Northwest Territories 85.8 85.8  
Nunavut 75.9 75.9  
1. There are no administrative records used in the new car dealers.

Weighted Response Rates

Respondents are sent a questionnaire or are contacted by telephone to obtain their sales and inventory values, as well as to confirm the opening or closing of business trading locations. Collection of the data begins approximately 7 working days after the end of the reference month and continues for the duration of that month.

New entrants to the survey are introduced to the survey via an introductory letter that informs the respondent that a representative of Statistics Canada will be calling. This call is to introduce the respondent to the survey, confirm the respondent's business activity, establish and begin data collection, as well as to answer any questions that the respondent may have.

8. Editing

Data editing is the application of checks to detect missing, invalid or inconsistent entries or to point to data records that are potentially in error. In the survey process for the MRTS, data editing is done at two different time periods.

First of all, editing is done during data collection. Once data are collected via the telephone, or via the receipt of completed mail-in questionnaires, the data are captured using customized data capture applications. All data are subjected to data editing. Edits during data collection are referred to as field edits and generally consist of validity and some simple consistency edits. They are used to detect mistakes made during the interview by the respondent or the interviewer and to identify missing information during collection in order to reduce the need for follow-up later on. Another purpose of the field edits is to clean up responses. In the MRTS, the current month’s responses are edited against the respondent’s previous month’s responses and/or the previous year’s responses for the current month. Field edits are also used to identify problems with data collection procedures and the design of the questionnaire, as well as the need for more interviewer training.

Follow-up with respondents occurs to validate potential erroneous data following any failed preliminary edit check of the data. Once validated, the collected data is regularly transmitted to the head office in Ottawa.

Secondly, editing known as statistical editing is also done after data collection and this is more empirical in nature. Statistical editing is run prior to imputation in order to identify the data that will be used as a basis to impute non-respondents. Large outliers that could disrupt a monthly trend are excluded from trend calculations by the statistical edits. It should be noted that adjustments are not made at this stage to correct the reported outliers.

The first step in the statistical editing is to identify which responses will be subjected to the statistical edit rules. Reported data for the current reference month will go through various edit checks.

The first set of edit checks is based on the Hidiriglou-Berthelot method whereby a ratio of the respondent’s current month data over historical (last month, same month last year) or auxiliary data is analyzed. When the respondent’s ratio differs significantly from ratios of respondents who are similar in terms of industry and/or geography group, the response is deemed an outlier.

The second set of edits consists of an edit known as the share of market edit. With this method, one is able to edit all respondents, even those where historical and auxiliary data is unavailable. The method relies on current month data only. Therefore, within a group of respondents, that are similar in terms of industrial group and/or geography, if the weighted contribution of a respondent to the group’s total is too large, it will be flagged as an outlier.

For edit checks based on the Hidiriglou-Berthelot method, data that are flagged as an outlier will not be included in the imputation models (those based on ratios). Also, data that are flagged as outliers in the share of market edit will not be included in the imputation models where means and medians are calculated to impute for responses that have no historical responses.

In conjunction with the statistical editing after data collection of reported data, there is also error detection done on the extracted GST data. Modeled data based on the GST are also subject to an extensive series of processing steps which thoroughly verify each record that is the basis for the model as well as the record being modeled. Edits are performed at a more aggregate level (industry by geography level) to detect records which deviate from the expected range, either by exhibiting large month-to-month change, or differing significantly from the remaining units. All data which fail these edits are subject to manual inspection and possible corrective action.

9. Imputation

Imputation in the MRTS is the process used to assign replacement values for missing data. This is done by assigning values when they are missing on the record being edited to ensure that estimates are of high quality and that a plausible, internal consistency is created. Due to concerns of response burden, cost and timeliness, it is generally impossible to do all follow-ups with the respondents in order to resolve missing responses. Since it is desirable to produce a complete and consistent microdata file, imputation is used to handle the remaining missing cases.

In the MRTS, imputation is based on historical data or administrative data (GST sales). The appropriate method is selected according to a strategy that is based on whether historical data is available, auxiliary data is available and/or which reference month is being processed.

There are three types of historical imputation methods. The first type is a general trend that uses one historical data source (previous month, data from next month or data from same month previous year). The second type is a regression model where data from previous month and same month previous year are used simultaneously. The third type uses the historical data as a direct replacement value for a non-respondent. Depending upon the particular reference month, there is an order of preference that exists so that top quality imputation can result. The historical imputation method that was labelled as the third type above is always the last option in the order for each reference month.

The imputation methods using administrative data are automatically selected when historical information is unavailable for a non-respondent. The administrative data source (annual GST sales) is the basis of these methods. The annual GST sales are used for two types of methods. One is a general trend that will be used for simple structure, e.g. enterprises with only one establishment, and a second type is called median-average that is used for units with a more complex structure.

10. Estimation

Estimation is a process that approximates unknown population parameters using only part of the population that is included in a sample. Inferences about these unknown parameters are then made, using the sample data and associated survey design. This stage uses Statistics Canada's Generalized Estimation System (GES).

For retail sales, the population is divided into a survey portion (take-all and take-some strata) and a non-survey portion (take-none stratum). From the sample that is drawn from the survey portion, an estimate for the population is determined through the use of a Horvitz-Thompson estimator where responses for sales are weighted by using the inverses of the inclusion probabilities of the sampled units. Such weights (called sampling weights) can be interpreted as the number of times that each sampled unit should be replicated to represent the entire population. The calculated weighted sales values are summed by domain, to produce the total sales estimates by each industrial group / geographic area combination. A domain is defined as the most recent classification values available from the BR for the unit and the survey reference period. These domains may differ from the original sampling strata because units may have changed size, industry or location. Changes in classification are reflected immediately in the estimates and do not accumulate over time. For the non-survey portion, the sales are estimated with statistical models using monthly GST sales.

For more information on the methodology for modeling sales from administrative data sources which also contributes to the estimates of the survey portion, refer to ‘Monthly Retail Survey: Use of Administrative Data’ under ‘Documentation’ of the IMDB.

The measure of precision used for the MRTS to evaluate the quality of a population parameter estimate and to obtain valid inferences is the variance. The variance from the survey portion is derived directly from a stratified simple random sample without replacement.

Sample estimates may differ from the expected value of the estimates. However, since the estimate is based on a probability sample, the variability of the sample estimate with respect to its expected value can be measured. The variance of an estimate is a measure of the precision of the sample estimate and is defined as the average, over all possible samples, of the squared difference of the estimate from its expected value.

11. Revisions and seasonal adjustment

Revisions in the raw data are required to correct known non-sampling errors. These normally include replacing imputed data with reported data, corrections to previously reported data, and estimates for new births that were not known at the time of the original estimates. Raw data are revised, on a monthly basis, for the month immediately prior to the current reference month being published. That is, when data for December are being published for the first time, there will also be revisions, if necessary, to the raw data for November. In addition, revisions are made once a year, with the initial release of the February data, for all months in the previous year. The purpose is to correct any significant problems that have been found that apply for an extended period. The actual period of revision depends on the nature of the problem identified, but rarely exceeds three years. Time series contain the elements essential to the description, explanation and forecasting of the behaviour of an economic phenomenon: "They are statistical records of the evolution of economic processes through time."1 Economic time series such as the Monthly Retail Trade Survey can be broken down into five main components: the trend-cycle, seasonality, the trading-day effect, the Easter holiday effect and the irregular component.

The trend represents the long-term change in the series, whereas the cycle represents a smooth, quasi-periodical movement about the trend, showing a succession of growth and decline phases (e.g., the business cycle). These two components—the trend and the cycle—are estimated together, and the trend-cycle reflects the fundamental evolution of the series. The other components reflect short-term transient movements.

The seasonal component represents sub-annual, monthly or quarterly fluctuations that recur more or less regularly from one year to the next. Seasonal variations are caused by the direct and indirect effects of the climatic seasons and institutional factors (attributable to social conventions or administrative rules; e.g., Christmas).

The trading-day component originates from the fact that the relative importance of the days varies systematically within the week and that the number of each day of the week in a given month varies from year to year. This effect is present when activity varies with the day of the week. For instance, Sunday is typically less active than the other days, and the number of Sundays, Mondays, etc., in a given month changes from year to year.

The Easter holiday effect is the variation due to the shift of part of April’s activity to March when Easter falls in March rather than April.

Lastly, the irregular component includes all other more or less erratic fluctuations not taken into account in the preceding components. It is a residual that includes errors of measurement on the 1. A Note on the Seasonal adjustment of Economic Time Series», Canadian Statistical Review, August 1974.  A variable itself as well as unusual events (e.g., strikes, drought, floods, major power blackout or other unexpected events causing variations in respondents’ activities).

Thus, the latter four components—seasonal, irregular, trading-day and Easter holiday effect—all conceal the fundamental trend-cycle component of the series. Seasonal adjustment (correction of seasonal variation) consists in removing the seasonal, trading-day and Easter holiday effect components from the series, and it thus helps reveal the trend-cycle. While seasonal adjustment permits a better understanding of the underlying trend-cycle of a series, the seasonally adjusted series still contains an irregular component. Slight month-to-month variations in the seasonally adjusted series may be simple irregular movements. To get a better idea of the underlying trend, users should examine several months of the seasonally adjusted series.

Since April 2008, Monthly Retail Trade Survey data are seasonally adjusted using the X-12- ARIMA2 software. The technique that is used essentially consists of first correcting the initial series for all sorts of undesirable effects, such as the trading-day and the Easter holiday effects, by a module called regARIMA. These effects are estimated using regression models with ARIMA errors (auto-regressive integrated moving average models). The series can also be extrapolated for at least one year by using the model. Subsequently, the raw series—pre-adjusted and extrapolated if applicable— is seasonally adjusted by the X-11 method.

The X-11 method is used for analysing monthly and quarterly series. It is based on an iterative principle applied in estimating the different components, with estimation being done at each stage using adequate moving averages3. The moving averages used to estimate the main components—the trend and seasonality—are primarily smoothing tools designed to eliminate an undesirable component from the series. Since moving averages react poorly to the presence of atypical values, the X-11 method includes a tool for detecting and correcting atypical points. This tool is used to clean up the series during the seasonal adjustment. Outlying data points can also be detected and corrected in advance, within the regARIMA module.

Lastly, the annual totals of the seasonally adjusted series are forced to the annual totals of the original series.

Unfortunately, seasonal adjustment removes the sub-annual additivity of a system of series; small discrepancies can be observed between the sum of seasonally adjusted series and the direct seasonal adjustment of their total. To insure or restore additivity in a system of series, a reconciliation process is applied or indirect seasonal adjustment is used, i.e. the seasonal adjustment of a total is derived by the summation of the individually seasonally adjusted series.

12. Data quality evaluation

The methodology of this survey has been designed to control errors and to reduce their potential effects on estimates. However, the survey results remain subject to errors, of which sampling error is only one component of the total survey error. Sampling error results when observations are made only on a sample and not on the entire population. All other errors arising from the various phases of a survey are referred to as nonsampling errors. For example, these types of errors can occur when a respondent provides incorrect information or does not answer certain questions; when a unit in the target population is omitted or covered more than once; when GST data for records being modeled for a particular month are not representative of the actual record for various reasons; when a unit that is out of scope for the survey is included by mistake or when errors occur in data processing, such as coding or capture errors.

Prior to publication, combined survey results are analyzed for comparability; in general, this includes a detailed review of individual responses (especially for large businesses), general economic conditions and historical trends.

A common measure of data quality for surveys is the coefficient of variation (CV). The coefficient of variation, defined as the standard error divided by the sample estimate, is a measure of precision in relative terms. Since the coefficient of variation is calculated from responses of individual units, it also measures some non-sampling errors.

The formula used to calculate coefficients of variation (CV) as percentages is:

CV (X) = S(X) * 100% / X
where X denotes the estimate and S(X) denotes the standard error of X.

Confidence intervals can be constructed around the estimates using the estimate and the CV. Thus, for our sample, it is possible to state with a given level of confidence that the expected value will fall within the confidence interval constructed around the estimate. For example, if an estimate of $12,000,000 has a CV of 2%, the standard error will be $240,000 (the estimate multiplied by the CV). It can be stated with 68% confidence that the expected values will fall within the interval whose length equals the standard deviation about the estimate, i.e. between $11,760,000 and $12,240,000.

Alternatively, it can be stated with 95% confidence that the expected value will fall within the interval whose length equals two standard deviations about the estimate, i.e. between $11,520,000 and $12,480,000.

Finally, due to the small contribution of the non-survey portion to the total estimates, bias in the non-survey portion has a negligible impact on the CVs. Therefore, the CV from the survey portion is used for the total estimate that is the summation of estimates from the surveyed and non-surveyed portions.

13. Disclosure control

Statistics Canada is prohibited by law from releasing any data which would divulge information obtained under the Statistics Act that relates to any identifiable person, business or organization without the prior knowledge or the consent in writing of that person, business or organization. Various confidentiality rules are applied to all data that are released or published to prevent the publication or disclosure of any information deemed confidential. If necessary, data are suppressed to prevent direct or residual disclosure of identifiable data.

Confidentiality analysis includes the detection of possible "direct disclosure", which occurs when the value in a tabulation cell is composed of a few respondents or when the cell is dominated by a few companies.

 

Life in the National Capital Region

One of the best things about being a Statistics Canada employee is that you get to grow your career in the National Capital Region. Ottawa is the city that popular media and association polls consistently name as the top place to live in Canada for its friendly atmosphere and rich culture.

Ottawa, established on the banks of the Ottawa, Rideau and Gatineau rivers, is one of the most beautiful among the G8 capitals of the world. It is brimming with culture and heritage with its many national organizations, parklands, waterways and historic architecture.

Neighbourhoods in the National Capital Region
Neighbourhoods in the National Capital Region
Discover the dynamic culture and friendly atmosphere
Things to do in the National Capital Region
Things to do in the National Capital Region
Something for everyone, whatever your interests

Things to do in the National Capital Region

For the culture seeker
For the kids
For the sports enthusiast
For the shopaholic
For the nature lover
For the foodie

For the culture seeker

You’ll find a wealth of galleries and museums in the National Capital Region. There are 29 museums and galleries, including 12 national museums devoted to art, nature, science and technology, aviation, war history, civilization, and more. Many of these cultural attractions line the Confederation Boulevard, "Canada’s Discovery Route," which links Quebec and Ontario.

Ottawa-Gatineau is also home to several performing arts organizations that bring theatre, dance and live music to the city. There are festivals year-round in Ottawa, which means that you will never be at a loss for things to see and do.

War Museum | Musée de la guerre

For the kids

With its active, involved communities, the National Capital Region is an ideal place to raise a family. It is a family-oriented city with an abundance of parks, excellent choices for public and private education, first-rate healthcare facilities and a variety of entertainment options. Ottawa-Gatineau’s diverse community provides children the opportunity to experience the world’s many cultures through festivals, special events and the arts.

Hot air balloons | Ballons à air chaud

For the sports enthusiast

Whether you wish to be active or simply wish to be a spectator, the region has numerous recreational choices for you. Get ready to cheer on your favourite team! Ottawa-Gatineau is home to major and minor league sports teams, including the Ottawa Senators hockey team.

A few minutes away from downtown Ottawa is Gatineau Park, where hiking, mountain biking, canoeing and swimming are popular activities in the summer as are snowshoeing and skiing in the winter.

Mountain bikers | Vététistes

For the shopaholic

Shopaholics will love the National Capital Region. Major department stores, discount warehouses or specialty boutiques, Ottawa-Gatineau has them all. There are a number of interesting shopping areas that are perfect for outdoor strolling and which feature locally-crafted, original merchandise. The Bank Street Promenade, the ByWard Market, Rideau Street, the Glebe, Westboro Village and the Sparks Street Mall (Canada's oldest pedestrian mall) are all areas where you can shop at ease and then take a break at a café or pub.

Rideau Centre

For the nature lover

Ottawa-Gatineau residents enjoy a healthy and active lifestyle thanks to the region’s numerous parks, forests, waterways and open spaces. Hundreds of kilometres of cross-country ski trails as well as bicycling, rollerblading and jogging paths can be found throughout the region, and winding alongside the three rivers and canal that converge in the heart of the city.

The Rideau Canal is one of the Capital's most popular recreational areas. In the summer, there are dozens of canoes and motorboats in the canal, while pedestrians, runners, cyclists and in-line skaters enjoy the recreational pathways alongside it. In the winter, eight kilometres of the canal’s frozen surface are cleared to become the largest outdoor ice-skating rink in the world.

Hiking | Randonnée

For the foodie

A rich variety of restaurants offer fare to satisfy any appetite. Ottawa-Gatineau is home to many different cultures and that is reflected in the diversity of its restaurants. From traditional haute cuisine to more contemporary and ethnic foods, the National Capital Region features a wonderful range of delicious fare.

If you’re in the mood for a gourmet picnic, head over to the picturesque Byward Market to pick up a baguette, cheese, fresh fruit and vegetables. There are dozens of market stalls from which to choose the ingredients you will need for your outdoor feast!

Food | Aliments